243 research outputs found

    Impact of T2R38 receptor polymorphisms on Pseudomonas aeruginosa infection in cystic fibrosis

    Get PDF
    The T2R38 (taste receptor 2 member 38) bitter taste receptor on respiratory epithelia detects Pseudomonas aeruginosa N-acyl-l-homoserine lactones (AHLs). In vitro, T2R38 activation by AHLs initiates calcium-mediated increases in nitric oxide production and ciliary beat frequency, dependent on polymorphisms in the TAS2R38 gene (1). In patients with chronic rhinosinusitis, the TAS2R38 genotype is proposed to modify mucosal responses to P. aeruginosa (1). Polymorphisms in the TAS2R38 gene result in two high-frequency haplotypes associated with taste perception of the bitter compound phenylthiocarbamide (2). The “taster” haplotype codes proline-alanine-valine (PAV), and the “nontaster” haplotype codes alanine-valine-isoleucine (AVI) at positions 49, 262, and 296 in the receptor protein. Responses to AHLs in vitro are greatest in PAV/PAV epithelial cells, and this genotype is reported to be protective against P. aeruginosa in the sinonasal airway (1). P. aeruginosa is the most frequently isolated respiratory pathogen in cystic fibrosis (CF), and chronic infection is associated with accelerated rates of disease progression. Determining the impact of TAS2R38 polymorphisms on P. aeruginosa infection in CF could have implications for patient risk stratification and, as naturally occurring and synthetic agonists to T2R38 are already in clinical use (3), could identify promising therapeutic targets. We characterized T2R38 localization in the CF airway and investigated the hypothesis that TAS2R38 polymorphisms would modify the prevalence and impact of P. aeruginosa infection in CF. Some of the results of these studies have previously been reported in the form of abstracts

    Near-Infrared Molecular Hydrogen Emission from the Central Regions of Galaxies: Regulated Physical Conditions in the Interstellar Medium

    Full text link
    The central regions of many interacting and early-type spiral galaxies are actively forming stars. This process affects the physical and chemical properties of the local interstellar medium as well as the evolution of the galaxies. We observed near-infrared H2 emission lines: v=1-0 S(1), 3-2 S(3), 1-0 S(0), and 2-1 S(1) from the central ~1 kpc regions of the archetypical starburst galaxies, M82 and NGC 253, and the less dramatic but still vigorously star-forming galaxies, NGC 6946 and IC 342. Like the far-infrared continuum luminosity, the near-infrared H2 emission luminosity can directly trace the amount of star formation activity because the H2 emission lines arise from the interaction between hot and young stars and nearby neutral clouds. The observed H2 line ratios show that both thermal and non-thermal excitation are responsible for the emission lines, but that the great majority of the near-infrared H2 line emission in these galaxies arises from energy states excited by ultraviolet fluorescence. The derived physical conditions, e.g., far-ultraviolet radiation field and gas density, from [C II] and [O I] lines and far-infrared continuum observations when used as inputs to photodissociation models, also explain the luminosity of the observed H2 v=1-0 S(1) line. The ratio of the H2 v=1-0 S(1) line to far-IR continuum luminosity is remarkably constant over a broad range of galaxy luminosities; L_H2/L_FIR = about 10^{-5}, in normal late-type galaxies (including the Galactic center), in nearby starburst galaxies, and in luminous IR galaxies (LIRGs: L_FIR > 10^{11} L_sun). Examining this constant ratio in the context of photodissociation region models, we conclude that it implies that the strength of the incident UV field on typical molecular clouds follows the gas density at the cloud surface.Comment: Accepted for ApJ, 24 pages, 17 figures, for complete PDF file, see http://kao.re.kr/~soojong/mypaper/2004_pak_egh2.pd

    Assessment of F/HN-Pseudotyped Lentivirus as a Clinically Relevant Vector for Lung Gene Therapy

    Get PDF
    RATIONALE: Ongoing efforts to improve pulmonary gene transfer thereby enabling gene therapy for the treatment of lung diseases, such as cystic fibrosis (CF), has led to the assessment of a lentiviral vector (simian immunodeficiency virus [SIV]) pseudotyped with the Sendai virus envelope proteins F and HN. OBJECTIVES: To place this vector onto a translational pathway to the clinic by addressing some key milestones that have to be achieved. METHODS: F/HN-SIV transduction efficiency, duration of expression, and toxicity were assessed in mice. In addition, F/HN-SIV was assessed in differentiated human air-liquid interface cultures, primary human nasal epithelial cells, and human and sheep lung slices. MEASUREMENTS AND MAIN RESULTS: A single dose produces lung expression for the lifetime of the mouse (~2 yr). Only brief contact time is needed to achieve transduction. Repeated daily administration leads to a dose-related increase in gene expression. Repeated monthly administration to mouse lower airways is feasible without loss of gene expression. There is no evidence of chronic toxicity during a 2-year study period. F/HN-SIV leads to persistent gene expression in human differentiated airway cultures and human lung slices and transduces freshly obtained primary human airway epithelial cells. CONCLUSIONS: The data support F/HN-pseudotyped SIV as a promising vector for pulmonary gene therapy for several diseases including CF. We are now undertaking the necessary refinements to progress this vector into clinical trials

    The role of doxorubicin in non-viral gene transfer in the lung

    Get PDF
    a b s t r a c t Proteasome inhibitors have been shown to increase adeno-associated virus (AAV)-mediated transduction in vitro and in vivo. To assess if proteasome inhibitors also increase lipid-mediated gene transfer with relevance to cystic fibrosis (CF), we first assessed the effects of doxorubicin and N-acetyl-L-leucinyl-L-leucinal-L-norleucinal in non-CF (A549) and CF (CFTE29o-) airway epithelial cell lines. CFTE29o-cells did not show a response to Dox or LLnL; however, gene transfer in A549 cells increased in a dose-related fashion (p < 0.05), up to approximately 20-fold respectively at the optimal dose (no treatment: 9.3 Â 10 4 AE 1.5 Â 10 3 , Dox: 1.6 Â 10 6 AE 2.6 Â 10 5 , LLnL: 1.9 Â 10 6 AE 3.2 Â 10 5 RLU/mg protein). As Dox is used clinically in cancer chemotherapy we next assessed the effect of this drug on non-viral lung gene transfer in vivo. CF knockout mice were injected intraperitoneally (IP) with Dox (25-100 mg/kg) immediately before nebulisation with plasmid DNA carrying a luciferase reporter gene under the control of a CMV promoter/ enhancer (pCIKLux) complexed to the cationic lipid GL67A. Dox also significantly (p < 0.05) increased expression of a plasmid regulated by an elongation factor 1a promoter (hCEFI) approximately 8-fold. Although administration of Dox before lung gene transfer may not be a clinically viable option, understanding how Dox increases lung gene expression may help to shed light on intracellular bottle-necks to gene transfer, and may help to identify other adjuncts that may be more appropriate for use in man

    Pharmacological and pre-clinical safety profile of rSIV.F/HN, a hybrid lentiviral vector for cystic fibrosis gene therapy

    Get PDF
    RATIONALE AND OBJECTIVE: Cystic fibrosis (CF) is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. CFTR modulators offer significant improvements, but approximately 10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.F/HN, a lentiviral vector optimized for lung delivery, including CFTR protein expression, functional correction of CFTR defects and genomic integration site analysis in preparation for a first-in-human clinical trial.METHODS: Air-liquid interface cultures of primary human bronchial epithelial cells (HBEC) from CF patients (F508del/F508del), as well as a CFTR-deficient immortalized human lung epithelial cell line mimicking Class I (CFTR-null) homozygous mutations, were used to assess transduction efficiency. Quantification methods included a novel proximity ligation assay (PLA) for CFTR protein expression. For assessment of CFTR channel activity, Ussing chamber studies were conducted. The safety profile was assessed using integration site analysis and in vitro insertional mutagenesis studies.RESULTS: rSIV.F/HN expressed CFTR and restored CFTR-mediated chloride currents to physiological levels in primary F508del/F508del HBECs as well as in a Class I cells. In contrast, the latter could not be achieved by small-molecule CFTR modulators, underscoring the potential of gene therapy for this mutation class. Combination of rSIV.F/HN-CFTR with the potentiator ivacaftor showed a greater than additive effect. The genomic integration pattern showed no site predominance (frequency of occurrence ≤10%), and a low risk of insertional mutagenesis was observed in an in vitro immortalization assay.CONCLUSIONS: The results underscore rSIV.F/HN as a promising gene therapy vector for CF, providing a mutation-agnostic treatment option.</p

    CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression.

    Get PDF
    Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (≥56 d) in vivo transgene expression in the absence of lung inflammation

    The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 μm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻¹)
    corecore