52 research outputs found

    Factorization of the charge correlation function in B0Bˉ0B^0\bar B^0 oscillations

    Full text link
    Extraction of the mass difference Δm\Delta m from B0Bˉ0B^0\bar B^0 oscillations involves tagging of bottom flavour at production and at decay. We show that the asymmetry between the unmixed and mixed events factorizes into two parts, one depending on the production-tag and the other on the decay-tag.Comment: 6 pages, Latex, no figure

    Development of a dual-wavelength thermo-optical transmittance analyser: characterization and first results

    Get PDF
    Carbonaceous aerosol (CA) plays an important role in many different issues ranging from human health to global climate change. It mainly consists of organic carbon (OC) and elemental carbon (EC) although a minor fraction of carbonate carbon could be also present. Thermal-optical methods (TOT/TOR) are presently the most widespread approach to OC/EC speciation. Despite their popularity, there is still a disagreement among the results, especially for what concerns EC as different thermal protocols can be used. In fact, the pyrolysis occurring during the analysis can heavily affect OC/EC separation, depending on PM composition in addition to the used protocol. The main hypothesis at the basis of the technique relies on the optical properties of EC and OC: while EC is strongly light absorbing, OC is generally transparent in the visible range. However, a fraction of light-absorbing OC exists: the Brown Carbon (BrC) (Andreae and Gelencs\ue9r, 2006). The presence in the sample of BrC can shift the split point since it is slightly absorbing also @ 635nm, the typical laser wavelength used in this technique (Chen et al., 2015). At the Physics Department of the University of Genoa, a Sunset EC/OC analyser unit has been modified in order to monitor the optical transmittance during the thermo-optical analysis at two different wavelengths: 635 nm (the original wavelength of the instrument) and 405 nm (Fig.1). The additional use of the 405 nm transmittance measurement provides valuable information about the composition of the sample as well as on the pyrolytic carbon formation, both able to affect the instrumental \u201csplit point\u201d (i.e. the moment of the analysis in which the laser transmittance is back to its starting value, thus defining EC/OC separation). We present here the new instrument set-up, providing its full characterization with \u201csynthetic\u201d samples (i.e. mixtures of sucrose, graphitic carbon, and pure scattering particles). Moreover, we show also the results obtained analysing at 2-\uf06c - with both NIOSH and EUSAAR_2 protocols - real PM samples collected in very different conditions (i.e. summer-winter) and sites (ranging from urban to rural/mountain). Furthermore, we have recently introduced a new possibility, based on the apportionment of the absorption coefficient (babs) of particle-loaded filters, for correcting the thermo-optical analysis of PM samples (Massab\uf2 et al, 2016), an example in Fig.2. The apportionment is based on the optical analysis performed by the Multi-Wavelength Absorbance Analyser (MWAA), an instrument developed at the Physics Department of the University of Genoa (Massab\uf2 et al., 2015). The apportionment method uses the information gathered at five different wavelengths in a renewed and upgraded version of the approach usually referred to as Aethalometer model (Sandradewi et al., 2008). We present here also the results of the thermo-optical analysis correction (Massab\uf2 et al., 2016) applied to the dual-\uf06c analysis, which lead to a better homogeneity between the results obtained with different thermal protocols

    Rare radiative B decay to the orbitally excited K_2^*(1430) meson

    Get PDF
    The exclusive rare radiative B meson decay to the orbitally excited tensor K_2^*(1430) meson is investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. The calculated branching ratio BR(B --> K_2^*(1430)\gamma)=(1.7\pm 0.6)\times 10^{-5} as well as the ratio BR(B --> K_2^*(1430)\gamma)/BR(B --> K^*(892)\gamma)=0.38\pm 0.08 is found in a good agreement with recent experimental data from CLEO.Comment: 10 pages, RevTe

    Measuring the Photon Helicity in Radiative B Decays

    Full text link
    We propose a way of measuring the photon polarization in radiative B decays into K resonance states decaying to K\pi\pi, which can test the Standard Model and probe new physics. The photon polarization is shown to be measured by the up-down asymmetry of the photon direction relative to the K\pi\pi decay plane in the K resonance rest frame. The integrated asymmetry in K_1(1400)\to K\pi\pi, calculated to be 0.34\pm 0.05 in the Standard Model, is measurable at currently operating B factories.Comment: 4 pages, final version to appear in Physical Review Letter

    Radiative B decays to the axial KK mesons at next-to-leading order

    Full text link
    We calculate the branching ratios of BK1γB\to K_1\gamma at next-to-leading order (NLO) of αs\alpha_s where K1K_1 is the orbitally excited axial vector meson. The NLO decay amplitude is divided into the vertex correction and the hard spectator interaction part. The one is proportional to the weak form factor of BK1B\to K_1 transition while the other is a convolution between light-cone distribution amplitudes and hard scattering kernel. Using the light-cone sum rule results for the form factor, we have \calB(B^0\to K_1^0(1270)\gamma)=(0.828\pm0.335)\times 10^{-5} and \calB(B^0\to K_1^0(1400)\gamma)=(0.393\pm0.151)\times 10^{-5}.Comment: 17pages, 4 figures. Minor changes, typos corrected. PRD accepted versio

    Constraining the CKM Parameters using CP Violation in semi-leptonic B Decays

    Get PDF
    We discuss the usefulness of the CP violating semi-leptonic asymmetry a_{SL} not only as a signal of new physics, but also as a tool in constraining the CKM parameters. We show that this technique could yield useful results in the first years of running at the B factories. We present the analysis graphically in terms of M_{12}, the dispersive part of the B-Bbar mixing amplitude. This is complementary to the usual unitarity triangle representation and often allows a cleaner interpretation of the data.Comment: 15 pages REVTEX, 7 figure

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte

    Photon polarization in radiative B decays

    Full text link
    We study decay distributions in B -> K pi pi gamma, combining contributions from several overlapping resonances in a K pi pi mass range near 1400 MeV, (1^+) K_1(1400), (2^+) K^*_2(1430) and (1^-) K^*(1410). A method is proposed for using these distributions to determine a photon polarization parameter in the effective radiative weak Hamiltonian. This parameter is measured through an up-down asymmetry of the photon direction relative to the K pi pi decay plane. We calculate a dominant up-down asymmetry of 0.33 +- 0.05 from the K1(1400) resonance, which can be measured with about 10^8 B B-bar pairs, thus providing a new test for the Standard Model and a probe for some of its extensions.Comment: 22 pages, 3 figures, version to appear in Phys. Rev.

    Heavy Mesons in Two Dimensions

    Full text link
    The large mass limit of QCD uncovers symmetries that are not present in the QCD lagrangian. These symmetries have been applied to physical (finite mass) systems, such as B and D mesons. We explore the validity of this approximation in the 't Hooft model (two-dimensional QCD in the large-N approximation). We find that the large mass approximation is good, even at the charm mass, for form factors, but it breaks down for the pseudoscalar decay constant.Comment: 4 pages, 3 figures inc

    Relativistic Description of Exclusive Semileptonic Decays of Heavy Mesons

    Get PDF
    Using quasipotential approach, we have studied exclusive semileptonic decays of heavy mesons with the account of relativistic effects. Due to more complete relativistic description of the ss quark more precise expressions for semileptonic form factors are obtained. Various differential distributions in exclusive semileptonic decays of heavy mesons are calculated. It is argued that consistent account of relativistic effects and HQET motivated choice of the parameters of quark-antiquark potential allow to get reliable value for the ratio A2(0)/A1(0)A_2(0)/A_1(0) in the DKlνlD\to K^*l\nu_l decay as well as the ratio~Γ(DKlνl)/Γ(DKlνl)\Gamma(D\to K^*l\nu_l)/\Gamma(D\to Kl\nu_l). All calculated branching ratios are in accord with available experimental data.Comment: 18 pages, LATEX, 2 figures inclosed + 4 Postscript figure
    corecore