15,419 research outputs found

    Bose condensation in flat bands

    Full text link
    We derive effective Hamiltonians for lattice bosons with strong geometrical frustration of the kinetic energy by projecting the interactions on the flat lowest Bloch band. Specifically, we consider the Bose Hubbard model on the one dimensional sawtooth lattice and the two dimensional kagome lattice. Starting from a strictly local interaction the projection gives rise to effective long-range terms stabilizing a supersolid phase at densities above nu_c=1/9 of the kagome lattice. In the sawtooth lattice on the other hand we show that the solid order, which exists at the magic filling nu_c=1/4, is unstable to further doping. The universal low-energy properties at filling 1/4+delta nu are described by the well known commensurate-incommensurate transition. We support the analytic results by detailed numerical calculations using the Density Matrix Renormalization Group and exact diagonalization. Finally, we discuss possible realizations of the models using ultracold atoms as well as frustrated quantum magnets in high magnetic fields. We compute the momentum distribution and the noise correlations, that can be extracted from time of flight experiments or neutron scattering, and point to signatures of the unique supersolid phase of the kagome lattice.Comment: 18 pages, 13 figure

    Probing many-body states of ultra-cold atoms via noise correlations

    Full text link
    We propose to utilize density-density correlations in the image of an expanding gas cloud to probe complex many body states of trapped ultra-cold atoms. In particular we show how this technique can be used to detect superfluidity of fermionic gases and reveal broken spin symmetries in Mott-states of atoms in optical lattices. The feasibility of the method is investigated by analysis of the relevant signal to noise ratio including experimental imperfections

    Research Opportunities in Nutrition and Metabolism in Space

    Get PDF
    The objectives of the Life Sciences Research Office (LSRO) study on nutrient requirements for meeting metabolic needs in manned space flights are as follows: review extant knowledge on the subject; identify significant gaps in knowledge; formulate suggestions for possible research; and produce a documented report of the foregoing items that can be used for program planning. In accordance with NASA's request for this study, the report focuses on issues of nutrition and metabolism that relate primarily to the contemplated United States Space Station, secondarily to the Shuttle Program as an orbital test bed for operational studies, and incidentally to scenarios for future long-term space flights. Members of the LSRO ad hoc Working Group on Nutrition and Metabolism were provided with pertinent articles and summaries on the subject. At the meeting of the Working Group, presentations were made by NASA Headquarters program staff on past experiences relative to space-flight nutrition and metabolism, as well as scenarios for future flights. The discussions of the ad hoc Working Group focused on the following: (1) metabolic needs related to work and exercise; (2) nutrients required to meet such needs; (3) food types, management, and records; and (4) nutritional amelioration or prevention of space-related physiological and behavioral changes

    Decay of superfluid currents in a moving system of strongly interacting bosons

    Full text link
    We analyze the stability and decay of supercurrents of strongly interacting bosons on optical lattices. At the mean-field level, the system undergoes an irreversible dynamic phase transition, whereby the current decays beyond a critical phase gradient that depends on the interaction strength. At commensurate filling the transition line smoothly interpolates between the classical modulational instability of weakly interacting bosons and the equilibrium Mott transition at zero current. Below the mean-field instability, the current can decay due to quantum and thermal phase slips. We derive asymptotic expressions of the decay rate near the critical current. In a three-dimensional optical lattice this leads to very weak broadening of the transition. In one and two dimensions the broadening leads to significant current decay well below the mean-field critical current. We show that the temperature scale below which quantum phase slips dominate the decay of supercurrents is easily within experimental reach.Accepted manuscrip

    Anisotropic pair-superfluidity of trapped two-component Bose gases

    Full text link
    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with negative inter-species interactions in an optical lattice. We establish the phase diagram for filling n=1n=1 at zero and finite temperature, by applying Bosonic Dynamical Mean-Field Theory, and confirm the stability of pair-superfluidity for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.Comment: 7 pages, 11 figure

    Decay of super-currents in condensates in optical lattices

    Full text link
    In this paper we discuss decay of superfluid currents in boson lattice systems due to quantum tunneling and thermal activation mechanisms. We derive asymptotic expressions for the decay rate near the critical current in two regimes, deep in the superfluid phase and close to the superfluid-Mott insulator transition. The broadening of the transition at the critical current due to these decay mechanisms is more pronounced at lower dimensions. We also find that the crossover temperature below which quantum decay dominates is experimentally accessible in most cases. Finally, we discuss the dynamics of the current decay and point out the difference between low and high currents.Comment: Contribution to the special issue of Journal of Superconductivity in honor of Michael Tinkham's 75th birthda
    corecore