8 research outputs found

    Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector

    Get PDF
    We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed

    First demonstration of O (1 ns) timing resolution in the MicroBooNE liquid argon time projection chamber

    Get PDF
    MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns). The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE

    First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector

    Get PDF
    We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved

    First demonstration of O(1ns)\mathcal{O}(1\,\text{ns}) timing resolution in the MicroBooNE liquid argon time projection chamber

    Full text link
    MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1ns)\mathcal{O}(1\,\text{ns}). The result obtained allows MicroBooNE to access the ns neutrino pulse structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE

    Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector

    Full text link
    We report the first measurement of the differential cross section d2σ(Eν)/dcos(θμ)dPμd^{2}\sigma (E_{\nu})/ d\cos(\theta_{\mu}) dP_{\mu} for inclusive muon-neutrino charged-current scattering on argon. This measurement utilizes data from 6.4×1020\times10^{20} protons on target of exposure collected using the MicroBooNE liquid argon time projection chamber located along the Fermilab Booster Neutrino Beam with a mean neutrino energy of approximately 0.8~GeV. The mapping from reconstructed kinematics to truth quantities, particularly from reconstructed to true neutrino energy, is validated by comparing the distribution of reconstructed hadronic energy in data to that of the model prediction in different muon scattering angle bins after conditional constraint from the muon momentum distribution in data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well-modeled in simulation, enabling the unfolding to a triple-differential measurement over muon momentum, muon scattering angle, and neutrino energy. The unfolded measurement covers an extensive phase space, providing a wealth of information useful for future liquid argon time projection chamber experiments measuring neutrino oscillations. Comparisons against a number of commonly used model predictions are included and their performance in different parts of the available phase-space is discussed

    Comparing trastuzumab-related cardiotoxicity between elderly and younger patients with breast cancer : a prospective cohort study

    No full text
    OBJECTIVE: Trastuzumab is an HER-2 targeted humanized monoclonal antibody that significantly improves metastatic and non-metastatic breast cancer therapeutic outcomes. This study compares trastuzumab outcomes between two age cohorts in the Kuwait Cancer Control Centre (KCCC). PATIENTS AND METHODS: In a prospective comparative observational study, 93 HER-2 positive breast cancer patients undergoing different chemotherapy protocols + trastuzumab between April 2016 and April 2019 were included and divided into two cohorts based on their age (<60 and ≥60 years old). The individual decline in the LVEF from the baseline was calculated and compared between the two age cohorts. Logistic regression analysis was applied to investigate the association between age, comorbidities, BMI, anthracycline treatment, and baseline LVEF value, and trastuzumab-induced cardiotoxicity after adjustments made for the disease stage. RESULTS: The median baseline LVEF was 65% in both age cohorts (IQR 8% and 9% for older and younger patients, respectively). Whereas the median LVEF post-trastuzumab treatment was 51% and 55% in older and younger patients, respectively (IQR 8%; p-value = 0.22), even though older patients had significantly lower exposure to anthracyclines compared to younger patients (60% and 84.1%, respectively; p-value <0.001). 86.7% and 55.6% of older and younger patients, respectively, developed ≥10% decline in their LVEF from the baseline. Statistically, age was the only factor that significantly correlated with developing ≥10% decline in the LVEF (OR 4; p-value <0.012). CONCLUSIONS: Breast cancer patients aged 60 years and above in Kuwait were at a 4-fold higher risk of developing ≥10% decline in their LVEF from the baseline value compared to younger patients during trastuzumab treatment. Previous exposure to anthracyclines and comorbidities were not associated with a significantly increased cardiotoxicity risk in this study

    Breast Cancer in the Arabian Gulf Countries

    No full text
    Breast cancer stands as the prevailing malignancy across all six Gulf Cooperation Council (GCC) nations. In this literature review, we highlighted the incidence and trend of breast cancer in the GCC. Most of the studies reported a consistent increase in breast cancer incidence over the past decades, which was particularly attributed to the adoption of a Westernized lifestyle in the region and the implications of emerging risk factors and other environmental and societal factors, the increase in screening uptake, as well as the improvement in data collection and reporting in the GCC. The data on breast cancer risk factors in the GCC were limited. In this geographic region, breast cancer frequently manifests with distinctive characteristics, including an early onset, typically occurring before the age of 50; an advanced stage at presentation; and a higher pathological grade. Additionally, it often exhibits more aggressive features such as human epidermal growth factor receptor 2 (HER2) positivity or the presence of triple-negative (TN) attributes, particularly among younger patients. Despite the growing body of literature on breast cancer in the GCC, data pertaining to survival rates are, regrettably, meager. Reports on breast cancer survival rates emanating from the GCC region are largely confined to Saudi Arabia and the United Arab Emirates (UAE). In the UAE, predictive modeling reveals 2-year and 5-year survival rates of 97% and 89%, respectively, for the same period under scrutiny. These rates, when compared to Western counterparts such as Australia (89.5%) and Canada (88.2%), fall within the expected range. Conversely, Saudi Arabia reports a notably lower 5-year survival rate, standing at 72%. This disparity in survival rates underscores the need for further research directed toward elucidating risk factors and barriers that hinder early detection and screening. Additionally, there is a pressing need for expanded data reporting on survival outcomes within the GCC. In sum, a more comprehensive and nuanced understanding of breast cancer dynamics in this region is imperative to inform effective strategies for prevention, early detection, and improved patient outcomes

    Measurement of ambient radon daughter decay rates and energy spectra in liquid argon using the MicroBooNE detector

    Full text link
    We report measurements of radon daughters in liquid argon within the MicroBooNE time projection chamber (LArTPC). The presence of radon in MicroBooNE's 85 metric tons of active liquid argon bulk is probed with newly developed charge-based low-energy reconstruction tools and analysis techniques to detect correlated 214^{214}Bi-214^{214}Po radioactive decays. Special datasets taken during periods of active radon doping enable new demonstrations of the calorimetric capabilities of single-phase neutrino LArTPCs for β\beta and α\alpha particles with electron-equivalent energies ranging from 0.1 to 3.0 MeV. By applying 214^{214}Bi-214^{214}Po detection algorithms to beam-external physics data recorded over a 46-day period, no statistically significant presence of radon is detected, corresponding to a limit of <0.38<0.38 mBq/kg at the 95\% confidence level. The obtained radon radiopurity limit -- the first ever reported for a noble element detector incorporating liquid-phase purification -- is well below the target value of the future DUNE neutrino detector
    corecore