78 research outputs found
Thermodynamics of Two Dimensional Magnetic Nanoparticles
A two dimensional magnetic particle in the presence of an external magnetic
field is studied. Equilibrium thermodynamical properties are derived by
evaluating analytically the partition function. When the external field is
applied perpendicular to the anisotropy axis the system exhibits a second order
phase transition with order parameter being the magnetization parallel to the
field. In this case the system is isomorph to a mechanical system consisting in
a particle moving without friction in a circle rotating about its vertical
diameter. Contrary to a paramagnetic particle, equilibrium magnetization shows
a maximum at finite temperature. We also show that uniaxial anisotropy in a
system of noninteracting particles can be missinterpreted as a ferromagnetic or
antiferromagnetic coupling among the magnetic particles depending on the angle
between anisotropy axis and magnetic field.Comment: 4 pages 6 figures 19 reference
Ultrafast relaxation rates and reversal time in disordered ferrimagnets
In response to ultrafast laser pulses, single-phase metals have been classified as “fast” (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and “slow” (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of “fast” transition (TM) and “slow” rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger
Magnetostatic interactions between magnetic nanotubes
The investigation of interactions between magnetic nanotubes is complex and
often involves substantial simplifications. In this letter an analytical
expression for the magnetostatic interaction, taking into account the geometry
of the tubes, has been obtained. This expression allows for the definition of a
critical vertical separation for relative magnetization between nanotubes and
can be used for tailoring barcode-type nanostructures with prospective
applications such as biological separation and transport.Comment: 4 pages, 5 figure
- …