4 research outputs found

    Self-resonant Coil for Contactless Electrical Conductivity Measurement under Pulsed Ultra-high Magnetic Fields

    Full text link
    In this study, we develop experimental apparatus for contactless electrical conductivity measurements under pulsed high magnetic fields over 100 T using a self-resonant-type high-frequency circuit. The resonant power spectra were numerically analyzed, and the conducted simulations showed that the apparatus is optimal for electrical conductivity measurements of materials with high electrical conductivity. The newly developed instruments were applied to a high-temperature cuprate superconductor La2−x_{2-x}Srx_xCuO4_4 to show conductivity changes in magnetic fields up to 102 T with a good signal-to-noise ratio. The upper critical field was determined with high accuracy.Comment: 11 pages, 5 figure

    The surface-state of the topological insulator Bi2_2Se3_3 revealed by cyclotron resonance

    Get PDF
    To date transport measurements of topological insulators have been dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2_2Se3_3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state
    corecore