65 research outputs found

    cDNA cloning of rat major AP endonuclease (APEX nuclease) and analyses of its mRNA expression in rat tissues.

    Get PDF
    APEX nuclease is a mammalian DNA repair enzyme having apurinic/apyrimidinic (AP) endonuclease, 3'-5'-exonuclease, DNA 3' repair diesterase and DNA 3'-phosphatase activities. It is also a redox factor (Ref-1), stimulating DNA binding activity of AP-1 binding proteins such as Fos and Jun. In the present paper, a cDNA for the enzyme was isolated from a rat brain cDNA library using mouse Apex cDNA as a probe and sequenced. The rat Apex cDNA was 1221 nucleotides (nt) long, with a 951-nt coding region. The amino acid sequence of rat APEX nuclease has 98.4% identity with mouse APEX nuclease. Using the rat Apex cDNA as a probe for Northern blot analysis, the size of rat Apex mRNA was shown to be approximately 1.5 kb. Its expression was compared in 9 rat organs on postnatal days 7 and 28. Although Apex mRNA was expressed ubiquitously, the levels varied significantly, suggesting organ- or tissue-specific expression of the Apex gene. The highest level was observed in the testis, relatively high levels in the thymus, spleen, kidney and brain, and the lowest level in the liver. The level of expression at postnatal day 28, with the exception of the testis, was almost the same as or lower in respective organs than that at postnatal day 7. Postnatal developmental changes of Apex mRNA expression in the testis and thymus were further studied. The expression in testis was markedly increased on postnatal days 21 and 28. The expression in thymus increased once at postnatal day 14, and then decreased. The developmental changes of Apex mRNA expression in testis and thymus suggest that APEX nuclease is involved in processes such as recombinational events.</p

    cDNA cloning, sequence analysis and expression of a mouse 44-kDa nuclear protein copurified with DNA repair factors for acid-depurinated DNA

    Get PDF
    We purified a 44-kDa nuclear protein from salt-extract of permeable mouse ascites sarcoma cells in an effort to isolate factors involved in the repair of acid-depurinated DNA. It was copurified with a major AP endonuclease (APEX nuclease) by sequential column chromatography then further purified by sodium dodecyl sulphate-poly-acrylamide gel electrophoresis as a possible DNA repair support factor. Its partial amino acid sequences were determined, and a cDNA clone for the protein was isolated from a mouse T-cell cDNA library using long degenerate oligonucleotide probes deduced from the amino acid sequence. The complete nucleotide sequence of the cDNA (1.7 kilobases) was determined. Northern hybridization using this cDNA detected two transcripts: 1.8kb being the major one and 2.6 kb being the minor one. The complete amino acid sequence for the protein predicted from the nucleotide sequence of the cDNA indicates that the 44-kDa protein consists of 394 amino acids with a calculated molecular weight of 43,698. In tests performed thus far, the recombinant 44-kDa protein expressed in Escherichia coli has not expressed any repair-support activity. It remains to be analyzed whether the protein attains this activity after appropriate posttranslational modifications. Most parts of the 44-kDa protein cDNA and the deduced amino acid sequence were found to be identical to those of the protein p38 -2G4, recently reported as a cell cycle-specifically modulated nuclear protein of 38kDa. The p38-2G4 may be a truncated form of the present 44-kDa protein.</p

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    Tobacco-specific nitrosamine 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA) causes DNA damage and impaired replication/transcription in human lung cells.

    No full text
    Thirdhand smoke (THS) is a newly described health hazard composed of toxicants, mutagens and carcinogens, including nicotine-derived tobacco specific nitrosamines (TSNAs), one of which is 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA). Although TSNAs are generally potent carcinogens, the risk of NNA, which is specific to THS, is poorly understood. We recently reported that THS exposure-induced adverse impact on DNA replication and transcription with implications in the development of cancer and other diseases. Here, we investigated the role of NNA in THS exposure-induced harmful effects on fundamental cellular processes. We exposed cultured human lung epithelial BEAS-2B cells to NNA. The formation of DNA base damages was assessed by Long Amplicon QPCR (LA-QPCR); DNA double-strand breaks (DSBs) and NNA effects on replication and transcription by immunofluorescence (IF); and genomic instability by micronuclei (MN) formation. We found increased accumulation of oxidative DNA damage and DSBs as well as activation of DNA damage response pathway, after exposure of cells to NNA. Impaired S phase progression was also evident. Consistent with these results, we found increased MN formation, a marker of genomic instability, in NNA-exposed cells. Furthermore, ongoing RNA synthesis was significantly reduced by NNA exposure, however, RNA synthesis resumed fully after a 24h recovery period only in wild-type cells but not in those deficient in transcription-coupled nucleotide excision repair (TC-NER). Importantly, these cellular effects are common with the THS-exposure induced effects. Our findings suggest that NNA in THS could be a contributing factor for THS exposure-induced adverse health effect

    Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine

    No full text
    Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage
    • …
    corecore