6,307 research outputs found

    Momentum Space Integral Equations for Three Charged Particles: Diagonal Kernels

    Get PDF
    It has been a long-standing question whether momentum space integral equations of the Faddeev type are applicable to reactions of three charged particles, in particular above the three-body threshold. For, the presence of long-range Coulomb forces has been thought to give rise to such severe singularities in their kernels that the latter may lack the compactness property known to exist in the case of purely short-range interactions. Employing the rigorously equivalent formulation in terms of an effective-two-body theory we have proved in a preceding paper [Phys. Rev. C {\bf 61}, 064006 (2000)] that, for all energies, the nondiagonal kernels occurring in the integral equations which determine the transition amplitudes for all binary collision processes, possess on and off the energy shell only integrable singularities, provided all three particles have charges of the same sign, i.e., all Coulomb interactions are repulsive. In the present paper we prove that, for particles with charges of equal sign, the diagonal kernels, in contrast, possess one, but only one, nonintegrable singularity. The latter can, however, be isolated explicitly and dealt with in a well-defined manner. Taken together these results imply that modified integral equations can be formulated, with kernels that become compact after a few iterations. This concludes the proof that standard solution methods can be used for the calculation of all binary (i.e., (in-)elastic and rearrangement) amplitudes by means of momentum space integral equations of the effective-two-body type.Comment: 36 pages, 2 figures, accepted for publication in Phys. Rev.

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα0\Delta_{\alpha} \rightarrow 0 as C1Δα+o(Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα\rho_{\alpha} \rightarrow \infty the behavior a/2ρα4+o(1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System

    Mode Fluctuation Distribution for Spectra of Superconducting Microwave Billiards

    Full text link
    High resolution eigenvalue spectra of several two- and three-dimensional superconducting microwave cavities have been measured in the frequency range below 20 GHz and analyzed using a statistical measure which is given by the distribution of the normalized mode fluctuations. For chaotic systems the limit distribution is conjectured to show a universal Gaussian, whereas integrable systems should exhibit a non-Gaussian limit distribution. For the investigated Bunimovich stadium and the 3D-Sinai billiard we find that the distribution is in good agreement with this prediction. We study members of the family of limacon billiards, having mixed dynamics. It turns out that in this case the number of approximately 1000 eigenvalues for each billiard does not allow to observe significant deviations from a Gaussian, whereas an also measured circular billiard with regular dynamics shows the expected difference from a Gaussian.Comment: 7 pages, RevTex, 5 postscript figure, to be published in Phys. Rev. E. In case of any problems contact A. Baecker ([email protected]) or H. Rehfeld ([email protected]

    Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard

    Full text link
    Based on very accurate measurements performed on a superconducting microwave resonator shaped like a desymmetrized three-dimensional (3D) Sinai billiard, we investigate for the first time spectral properties of the vectorial Helmholtz, i.e. non-quantum wave equation for a classically totally chaotic and theoretically precisely studied system. We are thereby able to generalize some aspects of quantum chaos and present some results which are consequences of the polarization features of the electromagnetic waves.Comment: 4 pages RevTex; 4 postscript figures; to be published in Phys. Rev. Lett.; Info: [email protected]

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    proton-deuteron elastic scattering above the deuteron breakup

    Get PDF
    The complex Kohn variational principle and the (correlated) hyperspherical harmonics method are applied to study the proton-deuteron elastic scattering at energies above the deuteron breakup threshold. Results for the elastic cross section and various elastic polarization observables have been obtained by fully taking into account the long-range effect of the Coulomb interaction and using a realistic nucleon-nucleon interaction model. Detailed comparison between the theoretical predictions and the accurate and abundant proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure

    Influence of Low Energy Hadronic Interactions on Air-shower Simulations

    Full text link
    Experiments measuring cosmic rays above an energy of 10^14 eV deduce the energy and mass of the primary cosmic ray particles from air-shower simulations. We investigate the importance of hadronic interactions at low and high energies on the distributions of muons and electrons in showers on ground. In air shower simulation programs, hadronic interactions below an energy threshold in the range from 80 GeV to 500 GeV are simulated by low energy interaction models, like Fluka or Gheisha, and above that energy by high energy interaction models, e.g. Sibyll or QGJSJet. We find that the impact on shower development obtained by switching the transition energy from 80 GeV to 500 GeV is comparable to the difference obtained by switching between Fluka and Gheisha.Comment: 4 pages, 6 figures, ISVHECRI 200

    Experimental vs. Numerical Eigenvalues of a Bunimovich Stadium Billiard -- A Comparison

    Full text link
    We compare the statistical properties of eigenvalue sequences for a gamma=1 Bunimovich stadium billiard. The eigenvalues have been obtained by two ways: one set results from a measurement of the eigenfrequencies of a superconducting microwave resonator (real system) and the other set is calculated numerically (ideal system). The influence of the mechanical imperfections of the real system in the analysis of the spectral fluctuations and in the length spectra compared to the exact data of the ideal system are shown. We also discuss the influence of a family of marginally stable orbits, the bouncing ball orbits, in two microwave stadium billiards with different geometrical dimensions.Comment: RevTex, 8 pages, 8 figures (postscript), to be published in Phys. Rev.
    corecore