2 research outputs found

    Energy efficiency considerations in software‐defined wireless body area networks

    Get PDF
    Wireless body area networks (WBAN) provide remote services for patient monitoring which allows healthcare practitioners to diagnose, monitor, and prescribe them without their physical presence. To address the shortcomings of WBAN, software-defined networking (SDN) is regarded as an effective approach in this prototype. However, integrating SDN into WBAN presents several challenges in terms of safe data exchange, architectural framework, and resource efficiency. Because energy expenses account for a considerable portion of network expenditures, energy efficiency has to turn out to be a crucial design criterion for modern networking methods. However, creating energy-efficient systems is difficult because they must balance energy efficiency with network performance. In this article, the energy efficiency features are discussed that can widely be used in the software-defined wireless body area network (SDWBAN). A comprehensive survey has been carried out for various modern energy efficiency models based on routing algorithms, optimization models, secure data delivery, and traffic management. A comparative assessment of all the models has also been carried out for various parameters. Furthermore, we explore important concerns and future work in SDWBAN energy efficiency

    Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review

    No full text
    Preeclampsia is one of the illnesses associated with placental dysfunction and pregnancy-induced hypertension, which appears after the first 20 weeks of pregnancy and is marked by proteinuria and hypertension. It can affect pregnant women and limit fetal growth, resulting in low birth weights, a risk factor for neonatal mortality. Approximately 10% of pregnancies worldwide are affected by hypertensive disorders during pregnancy. In this review, we discuss the machine learning and deep learning methods for preeclampsia prediction that were published between 2018 and 2022. Many models have been created using a variety of data types, including demographic and clinical data. We determined the techniques that successfully predicted preeclampsia. The methods that were used the most are random forest, support vector machine, and artificial neural network (ANN). In addition, the prospects and challenges in preeclampsia prediction are discussed to boost the research on artificial intelligence systems, allowing academics and practitioners to improve their methods and advance automated prediction
    corecore