25 research outputs found

    Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    Get PDF
    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. Anin situ soil survey was conducted to examine the soils\u27 physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem

    Comprehensive Analysis of Mangrove Soil in Eastern Lagoon National Park of Abu Dhabi Emirate

    Get PDF
    This paper presents comprehensive scientific details about mangrove soil in Eastern Lagoon National Park. A total of 36 sites were studied. From each site, two soil samples were collected for detailed characterization. The results indicate that mangrove soil is fine in texture at surface and coarser at subsurface. Soil salinity exceeds seawater salinity. pHs is dominantly in the neutral range. Soil salinity and sodicity are high due to high Na of the seawater. The high CaCO3 contents in the sediments are due to broken shells. The rich organic matter content is due to fall of mangrove leaves and decomposition. The total N is high compared to the available P. The high available K can be attributed to organic-rich mud. Furthermore, the hypothesis of similar soil characteristics across the study area is tested. The evaluation confirmed the hypothesis. Thus, a management strategy of mangroves is required for the entire study area

    Sizing & Allocation of PV Units in Distribution Systems

    Get PDF
    The thesis focuses on allocation and sizing of PV units targeting the minimization of total cost of electricity purchase from the grid taking in consideration the capital cost of the units. The PV sizing and allocation problem is formulated as a mixed integer non linear programming (MINLP) problem where the objective is to supply local loads and if excess generation is available, the PV system would sell electricity back to the grid. The study is performed on the 13 bus radial feeder. The allocation and sizing problem of PV units is performed following two approaches. In the first approach, the problem is studied under demand-supply balance; while in the second approach, the problem is investigated under AC power balance. Since claims about PV units’ payback time exist in practice, this thesis considers a different strategy based on which it would calculate the PV units payback time. It considers the capacity factor of PV units that represents a percentage of PV output power depending on the availability of solar radiation. The proposed problem formulation in this work can become a good tool for both utility and customers. For utilities, the model proposed can provide an insight on the price of electricity that should be paid for green PV energy. From a customer’s perspective, the proposed model can provide the customer with a more accurate estimate of the PV payback time since the model takes into account the variability in PV as well as the fact that not all PV generation will be exported to the grid at a given moment. It would set the prices at which the customer would sell electricity to the grid at certain age of PV units and would investigate the PV operation period at which the system would consider their availability to be an advantage at the current PV electricity selling price as available in the market. Finally, the model presented in the study can be adapted to fit any region in the world taking into account two major factors, the electricity market price in the area and the capacity factor of PV units

    Impact of Brine Composition and Concentration on Capillary Pressure and Residual Oil Saturation in Limestone Core Samples

    Get PDF
    Low salinity water flooding (LSF) is a relatively simple and cheap EOR technique in which the salinit y of the injected water is optimized (by desalination and/or modification) to improve oil recovery over conventional waterflooding. Extensive laboratory experiments investigating the effect of LSF are available in the literature. Sulfate-rich as well as diluted brines have shown promising potential to increase oil production in limestone core samples. To quantify the low salinity effect, spontaneous imbibition and/or tertiary waterflooding experiments have been reported. For the first time in literature, this paper presents a comprehensive study of the centrifuge technique to investigate low salinity effect in carbonate samples. The study is divided into three parts. At first, a comprehensive screening was performed on the impact of different connate water and imbibition brine compositions/combinations on the spontaneous imbibition behavior. Second, the subsequent forced imbibition of the samples using the centrifuge method to investigate the impact of brine compositions on residual saturations and capillary pressure. Finally, three unsteady-state (USS) core floodings were conducted in order to examine the potential of the different brines to increase oil recovery in secondary mode (brine injection at connate water saturation) and tertiary mode (exchange of injection brine at mature recovery stage). The experiments were performed using Indiana limestone outcrops. The main conclusions of the study are spontaneous imbibition experiments only showed oil recovery in case the salinity of the imbibing water (IW) is lower than the salinity of the connate water (CW). No oil production was observed when the imbibing water had a higher salinity than the connate water or the salinity of the connate water and imbibing brine were identical. Moreover, the spontaneous imbibition experiments indicated that diluting the salinity of the imbibing water has a larger potential to spontaneously recover oil than the introduction of sulfate-rich sea water. The centrifuge experiments confirmed a connection between the overall salinity and oil recovery. As the salinity of the imbibing brines decreases, the capillary imbibition pressure curves showed an increasing water-wetting tendency and simultaneous reduction of the remaining oil saturation. The lowest remaining oil saturation was obtained for diluted sea water as CW and IW. The core flooding experiments reflected the results of the spontaneous imbibition and centrifuge experiments. Injecting brine at a rate of 0.05 cc/min, sea water and especially diluted sea water resulted in a significant higher oil recovery compared to formation brine. Moreover, when comparing secondary mode experiments, the remaining oil saturation after flooding by diluted sea water, sea water and formation water was 30.6 %, 35.5 % and 37.4 %, respectively. In tertiary injection mode, sea water did not lead to extra oil recovery while diluted sea water led to an additional oil recovery of 5.6 % in one out of two tertiary injection applications

    Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates

    Get PDF
    The United Arab Emirates is moving towards the use of renewable energy for many reasons, including the country’s high energy consumption, unstable oil prices, and increasing carbon dioxide emissions. The usage of electric vehicles can improve public health and reduce emissions that contribute to climate change. Thus, the usage of renewable energy resources to meet the demands of electric vehicles is the major challenge influencing the development of an optimal smart system that can satisfy energy requirements, enhance sustainability and reduce negative environmental impacts. The objective of this study was to examine different configurations of hybrid renewable energy systems for electric vehicle charging in Abu Dhabi city, UAE. A comprehensive study was conducted to investigate previous electric vehicle charging approaches and formulate the problem accordingly. Subsequently, methods for acquiring data with respect to the energy input and load profiles were determined, and a techno-economic analysis was performed using Hybrid Optimization of Multiple Energy Resources (HOMER) software. The results demonstrated that the optimal electric vehicle charging model comprising solar photovoltaics, wind turbines, batteries and a distribution grid was superior to the other studied configurations from the technical, economic and environmental perspectives. An optimal model could produce excess electricity of 22,006 kWh/year with an energy cost of 0.06743 USD/kWh. Furthermore, the proposed battery–grid–solar photovoltaics–wind turbine system had the highest renewable penetration and thus reduced carbon dioxide emissions by 384 tons/year. The results also indicated that the carbon credits associated with this system could result in savings of 8786.8 USD/year. This study provides new guidelines and identifies the best indicators for electric vehicle charging systems that will positively influence the trend in carbon dioxide emissions and achieve sustainable electricity generation. This study also provides a valid financial assessment for investors looking to encourage the use of renewable energy

    Enabling Electricity Access: Revisiting Load Models for AC Grid Operation-Part I

    Get PDF
    Meeting electricity demand in remote communities and non-electrified regions in the poor developing world is a challenge. Power generation is in shortage compared to electricity demand. Electric utilities either would enforce grid’s zonal load curtailment or not electrify regions. Controlling electricity demand can play a vital role in enabling electricity access; however, weather uncertainty drives electricity demand variability. This paper provides an overview of current demand side management research, identify research gaps and propose a more promising approach to enable electricity access. Also, it proposes manipulating appliances models to fit their operation in applications where power supply shortage is an issue such. The proposed work considers the effect of the probabilistic nature of weather and meeting AC grid codes of operation

    Enabling Electricity Access: A Comprehensive Energy Efficient Approach Mitigating Climate/Weather Variability-Part II

    Get PDF
    Population dispersion necessitates grid expansion to meet electricity demand. For many developing countries and remote communities, meeting electricity demand is a challenge due to a power generation shortage and load variability that is highly driven by weather uncertainty. Electric utilities’ practical planning solutions are to disable electricity access from new residential regions, supply at least 10 percent of the non-electrified regions, or follow a rotating feeder curtailment such that the new regions are electrified for few hours daily. This paper proposes an alternative framework to plan electricity access more efficiently in developing countries. A probabilistic multi-stage optimization framework that first incorporates in-depth analysis of appliance operational models, second accounts for AC grid codes of operation and third anticipates consumers’ actions is deployed. The framework is formulated to account for climate/weather uncertainty factors. Results show that energy efficiency can reach up to 97%, and the computation time can be improved by 99.6% with respect to the existing current state of the art approaches

    Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids

    No full text
    The Darcy-scale properties of reservoir rocks, such as capillary pressure and relative permeability, are controlled by multiphase flow properties at the pore scale. In the present paper, we implement a volume of fluid (VOF) method coupled with a physically based dynamic contact angle to perform pore-scale simulation of two-phase flow within a porous medium. The numerical model is based on the resolution of the Navier–Stokes equations as well as a phase fraction equation incorporating a dynamic contact angle model with wetting hysteresis effect. After the model is validated for a single phase, a two-phase flow simulation is performed on both a Newtonian and a non-Newtonian fluid; the latter consists of a polymer solution displaying a shear-thinning power law viscosity. To investigate the effects of contact angle hysteresis and the non-Newtonian nature of the fluid, simulations of both drainage and imbibition are carried out in order to analyze water and oil saturation—particularly critical parameters such as initial water saturation (Swi) and residual oil saturation (Sor) are assessed in terms of wettability. Additionally, the model sensitivities to the consistency factor (χ), the flow behavior index (n), and the advancing and receding contact angles are tested. Interestingly, the model correctly retrieves the variation in Sor and wettability and predicts behavior over a wide range of contact angles that are difficult to probe experimentally

    Simultaneous Quantitative Determination of Synthetic Cathinone Enantiomers in Urine and Plasma Using GC-NCI-MS

    No full text
    Development and validation of sensitive and selective method for enantioseparation and quantitation of synthetic cathinones is reported using GC-MS triple quadrupole mass spectrometry with negative chemical ionization (NCI) mode. Indirect chiral separation of thirty-six synthetic cathinone compounds has been achieved by using an optically pure chiral derivatizing agent (CDA) called (S)-(−)-N-(trifluoroacetyl)pyrrolidine-2-carbonyl chloride (L-TPC), which converts cathinone enantiomers into diastereoisomers that can be separated on achiral columns. As a result of using Ultra Inert 60 m column and performing slow heating rate (2°C/min) on the GC oven, an observed enhancement in enantiomer peak resolution has been achieved. An internal standard, (+)-cathinone, was used for quantitation of synthetic cathinones. Method validation in terms of linearities and sensitivity in terms of limits of detection (LODs), limits of quantitation (LOQs), recoveries, and reproducibilities has been obtained for fourteen selected compounds that examined simultaneously as a mixture after being spiked in urine and plasma. It was found that the LOD of the fourteen synthetic cathinones in urine was in the range of 0.26–0.76 µg/L, and in plasma, it was in the range of 0.26–0.34 µg/L. While the LOQ of the mixture in urine was in the range of 0.86–2.34 µg/L, and in plasma, it was in the range of 0.89–1.12 µg/L. Unlike the electron impact (EI) ion source, NCI showed better sensitivity by two orders of magnitude by comparing the obtained results with the recently published reports for quantitative analysis and enantioseparation of synthetic cathinones

    Performance of the CMORPH and GPM IMERG Products over the United Arab Emirates

    No full text
    Satellite-based precipitation products are becoming available at very high temporal and spatial resolutions, which has accelerated their use in various hydro-meteorological and hydro-climatological applications. Because the quantitative accuracy of such products is affected by numerous factors related to atmospheric and terrain properties, validating them over different regions and environments is needed. This study investigated the performance of two high-resolution global satellite-based precipitation products: the climate prediction center MORPHing technique (CMORPH) and the latest version of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Mission (GPM) algorithm (IMERG), V06, over the United Arab Emirates from 2010 through 2018. The estimates of the products and that of 71 in situ rain gauges distributed across the country were compared by employing several common quantitative, categorical, and graphical statistical measures at daily, event-duration, and annual temporal scales, and at the station and study area spatial scales. Both products perform quite well in rainfall detection (above 70%), but report rainfall not observed by the rain gauges at an alarming rate (more than 30%), especially for light rain (lower quartile). However, for moderate and intense (upper quartiles) rainfall rates, performance is much better. Because both products are highly correlated with rain gauge observations (mostly above 0.7), the satellite rainfall estimates can probably be significantly improved by removing the bias. Overall, the CMORPH and IMERG estimates demonstrate great potential for filling spatial gaps in rainfall observations, in addition to improving the temporal resolution. However, further improvement is required, regarding the overestimation and underestimation of small and large rainfall amounts, respectively
    corecore