7 research outputs found

    Multi-view self-supervised learning for multivariate variable-channel time series

    Full text link
    Labeling of multivariate biomedical time series data is a laborious and expensive process. Self-supervised contrastive learning alleviates the need for large, labeled datasets through pretraining on unlabeled data. However, for multivariate time series data, the set of input channels often varies between applications, and most existing work does not allow for transfer between datasets with different sets of input channels. We propose learning one encoder to operate on all input channels individually. We then use a message passing neural network to extract a single representation across channels. We demonstrate the potential of this method by pretraining our model on a dataset with six EEG channels and then fine-tuning it on a dataset with two different EEG channels. We compare models with and without the message passing neural network across different contrastive loss functions. We show that our method, combined with the TS2Vec loss, outperforms all other methods in most settings.Comment: To appear in proceedings of 2023 IEEE International workshop on Machine Learning for Signal Processin

    On the effectiveness of partial variance reduction in federated learning with heterogeneous data

    Full text link
    Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.Comment: Accepted to CVPR 202

    Synthetic data shuffling accelerates the convergence of federated learning under data heterogeneity

    Full text link
    In federated learning, data heterogeneity is a critical challenge. A straightforward solution is to shuffle the clients' data to homogenize the distribution. However, this may violate data access rights, and how and when shuffling can accelerate the convergence of a federated optimization algorithm is not theoretically well understood. In this paper, we establish a precise and quantifiable correspondence between data heterogeneity and parameters in the convergence rate when a fraction of data is shuffled across clients. We prove that shuffling can quadratically reduce the gradient dissimilarity with respect to the shuffling percentage, accelerating convergence. Inspired by the theory, we propose a practical approach that addresses the data access rights issue by shuffling locally generated synthetic data. The experimental results show that shuffling synthetic data improves the performance of multiple existing federated learning algorithms by a large margin

    On the effectiveness of partial variance reduction in federated learning with heterogeneous data

    Get PDF
    Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm

    Classification of colorimetric sensor data using time series

    Get PDF
    Colorimetric sensors are widely used as pH indicators, medical diagnostic devices and detection devices. The colorimetric sensor captures the color changes of a chromic chemical (dye) or array of chromic chemicals when exposed to a target substance (analyte). Sensing is typically carried out using the difference in dye color before and after exposure. This approach neglects the kinetic response, that is, the temporal evolution of the dye, which potentially contains additional information. We investigate the importance of the kinetic response by collecting a sequence of images over time. We applied end-to-end learning using three different convolution neural networks (CNN) and a recurrent network. We compared the performance to logistic regression, k-nearest-neighbor and random forest, where these methods only use the difference color from start to end as feature vector. We found that the CNNs were able to extract features from the kinetic response profiles that significantly improves the accuracy of the sensor. Thus, we conclude that the kinetic responses indeed improves the accuracy, which paves the way for new and better chemical sensors based on colorimetric responses

    Machine learning methods for the detection of explosives, drugs and precursor chemicals gathered using a colorimetric sniffer sensor

    No full text
    Colorimetric sensing technology for the detection of explosives, drugs, and their precursor chemicals is an important and effective approach. In this work, we use various machine learning models to detect these substances from colorimetric sensing experiments conducted in controlled environments. The detection experiments based on the response of a colorimetric chip containing 26 chemo-responsive dyes indicate that homemade explosives (HMEs) such as hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP), and methyl ethyl ketone peroxide (MEKP) used in improvised explosives devices are detected with true positive rate (TPR) of 70–75%, 73–90% and 60–82% respectively. Time series classifiers such as Convolutional Neural Networks (CNN) are explored, and the results indicate that improvements can be achieved with the use of kinetics of the chemical responses. The use of CNNs is limited, however, to scenarios where a large number of measurements, typically in the range of a few hundred, of each analyte are available. Feature selection of important dyes using the Group Lasso (GPLASSO) algorithm indicated that certain dyes are more important in discrimination of an analyte from ambient air. This information could be used for optimizing the colorimetric sensor and extend the detection to more analytes
    corecore