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ABSTRACT

Colorimetric sensors are widely used as pH indicators, medical diagnostic devices and detection devices. The
colorimetric sensor captures the color changes of a chromic chemical (dye) or array of chromic chemicals when
exposed to a target substance (analyte). Sensing is typically carried out using the difference in dye color before
and after exposure. This approach neglects the kinetic response, that is, the temporal evolution of the dye, which
potentially contains additional information. We investigate the importance of the kinetic response by collecting
a sequence of images over time. We applied end-to-end learning using three different convolution neural networks
(CNN) and a recurrent network. We compared the performance to logistic regression, k-nearest-neighbor and
random forest, where these methods only use the difference color from start to end as feature vector. We found
that the CNNs were able to extract features from the kinetic response profiles that significantly improves the
accuracy of the sensor. Thus, we conclude that the kinetic responses indeed improves the accuracy, which paves
the way for new and better chemical sensors based on colorimetric responses.

Keywords: colorimetric sensor, deep learning, kinetic response, time series classification, convolutional neural
network

1. INTRODUCTION

Colorimetric sensors have been used successfully in the detection of several organic and inorganic substances,
ranging from explosives to microbes. The data generated from such sensors are used in numerous applications
such as organic molecule detection,1 detection of explosives,2 detection of toxins3 and so on. This work focuses on
the application of machine learning, namely, time series classification algorithms on such dataset, with application
to explosives detection. Previous work on colorimetric sensor data classification4 have worked with the color
change of the sensor dyes after a set amount of time, denoted Datadiff using classifiers such as k-Nearest Neighbor
(KNN), Random Forest (RF) and Logistic Regression (LR). In that particular work, it was demonstrated that
RF was able to detect explosives and their precursors with very good accuracy.5 used LR to classify different
species of pathogenic bacteria, while6 used KNN and Linear Discriminant Analysis for identifying acidic and
basic samples. In all these works, the Datadiff has been used as input to the classifiers like KNN, RF and LR.
This type of analysis of the colorimetric sensor data is considered the state-of-the-art. In contrast, our work
focuses on the kinetic aspect of the data generated through the entire experiment of exposing a colorimetric
sensor chip with an analyte. The time series produced through the experiments are used for performing time
series classification using neural networks. We aim to enhance the understanding of time series aspects of the
colorimetric sensor data, and to exploit this aspect for achieving good detection performance. This is important
in improving existing detection capabilities as well paving the way for future developments in detection.
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1.1 Aim and contributions

In this work, deep learning architectures that have been successful in other domains have been utilized to perform
accurate classification of colorimetric sensor time series data.

Aim: To use time series/kinetic nature of the colorimetric sensor data that encodes the characteristics of
the chemical reaction for the accurate detection of explosives, their precursors and other compounds.

The contributions of this work are as follows.

• The novel characterisation of colorimetric sensor data as multidimensional time series.

• Development of time series classifiers that perform better than the state-of-the-art in colorimetric data
classification.

The results are expected from a machine learning perspective, so it should be stressed that the novelty is on the
colorimetric sensing side. They provide empirical evidence that it is worth-while to collect the kinetic responses
of colorimetric sensors, and not doing so will result in loss of information. This work focuses on the kinetic aspect
of the data generated through the entire experiment of exposing a colorimetric sensor chip with an analyte. The
time series produced through the experiments are used for performing time series classification using neural
networks. We aim to enhance the understanding of time series aspects of the colorimetric sensor data, and to
exploit this aspect for achieving better detection performance when compared to the state-of-the-art.

2. PROPOSED METHODS

We use the colorimetric data obtained through the sensor chips for automatically detecting the presence of
Home-Made Explosives (HMEs) and their precursors.

The benefits of taking a machine learning approach on HME detection can be summarized as follows.

• Improved detection capability : Manually observing the colorimetric sensor array after exposing it to the an-
alytes and making subsequent inferences is not only error-prone, but also difficult, owing to the complexity
of the sensors used today. An algorithmic solution to observing and detecting the presence of analytes is
more convenient as well as less-error prone.

• Improvement of sensor chip design: By analyzing the data obtained from a colorimetric sensor, meaningful
insights about the usefulness of its components (dyes) can be obtained. For instance, the usefulness of
certain dyes towards detection of certain target analytes can be quantified and subsequently, the sensor
can be made more effective by weeding out unimportant dyes.

Input data: The data obtained from the sensor are in the form of images that have been captured by
a digital camera, taken at a regular interval of ‘m’ and for a fixed duration of T, depending on the analyte.
Typical values for m and T 15 seconds and 5 minutes respectively. The data processing pipeline7 that consists
of a localization of dyes, pixel normalization and background removal is employed. This pipeline extracts the
pixel values of the spots within the chips and performs normalization to account for illumination effects. The
resulting data is in the form of several measurements of the values of the dyes taken over T. Subsequently, we
obtain data corresponding to each dye for different time points. There are 29 unique chemicals, called dyes, on
a chip, and since an RGB image is captured by the camera, there are 3 channels for each dye. We consider two
kinds of data in this work: (1) Data of the dyes extracted by the data processing pipeline, each example naively
treated as independent observations (2) Time series data that includes the measurements (obtained after passing
through the data processing pipeline) as a single example. The time series consists of the number of dyes times
the number of channels generated multiple times with different target analytes (chemical compounds of interest).

The traditional method of classifying colorimetric sensor data is to use what we refer to as the delta data. In
this approach, the difference between the last image and first image captured by the camera is computed, and
this difference serves as the input to the classifier.8 This approach has been shown to be very effective in various
tasks. In this work we also try alternative methods of generating the input to the classifier, such as time series
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Figure 1. Method of generating the time series data.Top image of the colorimetric chip is captured at various time intervals
using a digital camera. Bottom The R, G, B channel variation for a dye.

data because it captures the kinetic nature of the chemical reaction taking place when the chip is exposed to the
analyte.

Classifiers: In order to classify the two kinds of data, two different categories of classifiers are needed. In
the first category, we have traditional classifiers such as Random Forest (RF), k-Nearest Neighbors (KNN) and
Logistic Regression (LR) that have been proven to be good for classifying sensor data. In the second category,
we consider classifiers that have been successful in classifying time series data such as Convolutional Neural
Networks (CNN), its variants and Long Short-Term Memory (LSTM) Networks.

2.1 Traditional classifiers

2.1.1 RF

This classifier belongs to the family of ensemble learning algorithms. The ensemble in this context refers to a
collection of Decision Tree classifiers. The prediction made by the random forest is the prediction that is output
by majority of the trees in it. This method has been shown to have the best performance in classification of
colorimetric sensor data.4

2.1.2 KNN

The assignment of a class to a datapoint occur by means of a distance metric. This metric is used to assess if a
data point is close to another point (belonging to a particular class). This algorithm is particularly susceptible
to noise or irrelevant features, which can affect its accuracy.

2.1.3 LR

This classifier uses the logistic function to model the probability of a datapoint belonging to a particular class.
In order to do this the logistic functions parameters, need to be learned. This method can be thought of as a
single layer of a neural network.

2.2 Time series classifiers

The detection of explosives from the time series extracted from colorimetric sensor data is done by means of the
following deep learning architectures: CNN, Fully Convolutional Neural Network (FCN), Temporal Convolutional
Network with an Encoder-Decoder architecture (TCN-ED) and a Long Short Term Memory network (LSTM).
We emphasize that the approaches used in this work are not an exhaustive list of time series classifiers, but rather
the methods that were chosen are suitable for the type of datasets used in this work. In general, CNN and its
variants, namely, FCN and TCN-ED have been chosen because of the ability of CNNs to extract features from
time series data, and have proven success in other tasks and domains.9 The LSTM architecture was included
because of its success in various applications10,11 and its ability to exploit the dependencies that exists in time
series. Figure 1 shows the method of generating time series data and the classifier architectures.



2.2.1 Convolutional Neural Network

Convolution is the key operation of a CNN12 and is in neural networks described as y = f(w∗X+b). Here w is a
weight vector of length m that constitutes a filter (or sometimes called a convolution kernel), b is a bias term, X
is the multidimensional time series of length T , and f is is typically a non-linear function like a Rectified Linear
Unit (ReLU). When X is a multivariate time series, the filter w takes the same dimensionality of the input.
For our use-case, we consider a CNN with one dimensional (1D) convolution, which computes y along a single
dimension, namely, time. Thus the result of a single filter is another time series y. The application of several
filters on the input time series results in a multivariate time series with dimensionality equal to the number
of filters used. In our experiments we observed that a simple CNN with just one convolution layer gave good
results. In fact, it was observed that increasing the number of layers, significantly reduced the generalisation
performance.

2.2.2 Fully Convolutional Neural Network

The main difference between a CNN and an FCN13 is the way in which pooling is done. In the former, local
pooling layers are used after each convolution layer, and in the latter, a single global pooling layer replaces the
local pooling layers. This architecture has the advantage of drastically reducing the number of parameters in
the network.

2.2.3 Temporal Convolutional Network

A TCN uses multiple layers of temporal convolution (convolution along time) followed by pooling layer and the
discriminatory layer. In our case, we used an encoder-decoder architecture of TCN made popular for the task of
action segmentation and detection.14

2.2.4 Long Short Term Memory network

LSTMs15 have a fundamentally different architecture compared to CNNs and its variants. They use a recurrent
architecture where the nodes form a directed graph with feedback connections. In addition, temporal depen-
dencies within the data are captured using special gate and memory cell mechanisms. LSTMs have been shown
to be effective in learning the long-range dependencies that exist in data. These networks have been used for
language translation,16 time series classification,17 forecasting18 among other things.

3. EXPERIMENTS AND RESULTS

This section details the results obtained when performing multi-class classification for the two datasets used in
this work. Initially, the datasets are split into train and test sets, with the training set further undergoing a
10-fold cross validation for model selection. The best model obtained during cross-validation is used to classify
the test set. The above procedure is repeated 10 times where each run uses randomized data splits, and then
the aggregated results are reported. The aggregation is done by computing the sum of the resulting confusion
matrices, and deriving the following performance metrics from it.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
,

F1-score =
2 ∗ Precision

Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

Here TP refers to the number of True Positives, FP refers to the number of False Positives, TN refers to
the number of True Negatives and FN refers to the number of False Negatives. Since our goal is the detection
of certain analytes, we are interested in measuring the above metrics for these individual analytes. In the



results section (Section 3.3), there are two kinds of results: (a) per analyte metrics (Table 1) - the values of
the performance metrics are reported for each class in the dataset. This tells us how well the classifier detects
individual analytes, (b) average values of metrics: a single value corresponding to the average value of each
metric over all classes in the dataset. This summarizes the overall performance of the classifier on the dataset.

3.1 Baseline

The state-of-the-art in colorimetric sensor analysis consists of the following method. An image of the colorimetric
chip prior to exposing it to the target analyte is captured, and another image is captured after exposing the chip
to the analyte for a specified time period (often in the 5 minute range). Subsequently, the difference between the
second and first image is computed. This difference, which is called the difference image in the literature,8 serves
as the input to the classification algorithm. We refer to this type of data as Datadiff. Typical classifiers used in
the literature include, RF and KNN. We use this data construction method, RF, KNN and LR as baseline for
our experiments.

3.2 Dataset description

Data acquisition: The measurements were carried out using a prototype called the CRIM-TRACK sniffer. This
apparatus has an exchangeable flow chamber that houses the colorimetric chip, into which airflow is pumped
in using an air sampling system. The experimental campaigns are referred to as box experiments because the
sample of the target analyte is kept inside a closed box, and the resulting target analyte air sample is pumped
into the exchangeable chamber.

• HMTD dataset: This dataset was obtained from an experimental campaign of box experiments with various
samples of HMTD, H2O2, Hexamine and Ambient air. It contains the following percentage of instances
57.5%, 12.5%, 15% and 15% respectively.

We demonstrate good detection capability of these two explosives using the methods described in Section 2.
In addition, we compare the results obtained with the results of the baseline method (Section 3.1).

3.3 Results
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Figure 2. Plots of average values of metrics for the HMTD dataset.

The first comparison of performance is done with respect to average values of the performance metrics, which
helps to gain an overall picture of the classifier performance. The results are shown in Figure 2. The metrics
shown in the figure correspond to those of the main analyte that we are interested in, namely HMTD. For the
HMTD dataset (Figure 2), the RF classifier achieves the best performance, with the highest F1-score. Although
the TNR of LR appears to be higher than that of the others, its recall and hence F1-score is low.

The second comparison of performance is done between the per-class performance metrics of the classifiers
for the dataset. The results are shown in Table 1. For the HMTD dataset, CNN obtains the best performance in
terms of F1-score, Accuracy and Precision. Although RF has a very high recall, its precision is much lower than
that of CNN. In the case of other analytes, CNN achieves much better results when compared to the others.



Analyte Method Precision Recall
F1-
score

Accuracy

HMTD KNN 50.8 69.1 58.6 51.0
RF 60.9 98.8 75.4 67.7
LR 60.6 26.9 37.2 54.7
CNN 85.5 88.4 86.9 84.8

FCN 76.9 77.2 77.1 73.8
TCN-ED 80.9 74.5 77.6 75.4
LSTM 70.4 57.7 63.4 61.9

Hexamine KNN 60.9 17.5 27.2 84.4
RF 100 25 40 87.5
LR 38.2 65.0 48.2 76.7
CNN 90.4 82.5 86.3 96.3

FCN 64.9 60 62.3 89.6
TCN-ED 62.6 71.3 66.7 89.8
LSTM 39.7 38.8 39.2 82.9

H2O2 KNN 94.7 44.4 60.4 90.3
RF 99.2 78.8 87.8 96.4
LR 41.7 37.5 39.5 80.8
CNN 97.1 85.0 90.7 97.5

FCN 89.7 76.3 82.4 95.4
TCN-ED 86.9 70.6 77.9 94.3
LSTM 39.8 58.8 47.5 81.4

Ambient
air

KNN 21.1 24.4 22.6 72.2

RF 33.3 3.1 5.7 82.8
LR 32.0 66.3 43.2 70.9
CNN 61.6 66.3 63.9 89.3

FCN 47.4 57.5 51.9 84.8
TCN-ED 47.7 65.0 55.0 84.8
LSTM 27.5 35.0 30.8 77.5
Table 1. Results for HMTD dataset

4. DISCUSSION AND CONCLUSION

The results in Section 3 indicate that the time series representation of the colorimetric sensor data combined
with a simple CNN architecture is capable of detecting the explosives much better than the state-of-the-art.
There are a couple of notable observations:

• Superior classification results were obtained when time series classifiers were used to classify the entire
time series obtained from the sensor. In particular, the CNN classifier appears to have the best overall
performance on the dataset. This implies that the time series data (the kinetic response) contains important
information about the chemical reaction, which is crucial to accurately detecting the analytes.

• LSTM does not perform well in comparison with others. In our opinion, this indicates that the convolution
(of CNN) is more suitable to the dataset that we used than the gating and memory mechanism of an LSTM

• The state-of-the-art in colorimetric sensor data classification were much less effective in detecting the
explosives when compared to the methods proposed in this work. This implies that the time series data
(the kinetic response) contains important information about the chemical reaction, which is crucial to
accurately detecting the analytes.

This work differs from the previous works in colorimetric sensor data classification in two main aspects: (1)
the type of data being used, and (2) the kind of classifiers that are used. The experiments indicate that the time
series data combined with time series classifiers is indeed useful for detecting analytes more effectively than the
state-of-the-art.
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