4 research outputs found

    Cancer treatment: an overview of pulsed electric field utilization and generation

    Get PDF
    Patients diagnosed with cancer receive different types of treatments based on the type and the level of the tumour. An emerging treatment that differs from well-developed systematic therapies (i.e., Chemotherapy, Radiotherapy, and Immunotherapy) is Tumour Treating Field (TTF) treatment. Tumour behaviour under TTF treatment varies based on the electric field intensity; the process of exposing the tumour cells to an electric field is called electroporation. From the electrical perspective, the most efficient method for electroporation is to use a voltage pulse generator. Several pulse generator topologies have been introduced to overcome existing limitations, mitigate the drawbacks of classical generators, and provide more controllable, flexible, and portable solid-state voltage pulse generators. This paper provides a review of cancer treatment using TTF and highlights the key specifications required for efficient treatment. Additionally, potential voltage pulse generators are reviewed and compared in terms of their treatment efficacy and efficient use of electrical power

    Modeling and control of single-stage quadratic-boost split source inverters

    Get PDF
    This paper aims to develop the recently introduced Spilt-Source Inverter (SSI) topology to improve its boosting characteristics. New SSI topologies with high voltage gain are introduced in this paper. The proposed converters square the basic SSI’s boosting factor by utilizing an additional inductor, capacitor, and two diodes. Thus, the proposed converters are called Quadratic-Boost (or Square-Boost) SSIs (QBIs or SBIs). Four different QBI topologies are presented. One with continuous input current (CC-QBI), and the other draws a discontinuous input current (DC-QBI) but with reduced capacitor voltage stresses. This paper also introduces the small-signal model of the CC-QBI using state variables perturbance. Based on this model, the closed-loop voltage and current control approach of the dc-boosting factor are designed. Moreover, a modified space vector modulation (MSVM) scheme is presented to reduce the input current ripples. To evaluate the performance of the proposed topologies, a comparative study between them and the other counterpart from different perspectives is introduced. It can be found that the CC-QBI topology has superior boosting characteristics when operating with low input voltage compared with their counterparts. It has a higher boosting capability, lower capacitor voltages, and semiconductor stresses, especially when high voltage gains are required. These merits make the proposed topologies convenient to the Photovoltaic and Fuel-Cell systems. Finally, the feasibility of the suggested topology and the introduced mathematical model is verified via simulation and experimental results, which show good accordance with the theoretical analysis. AuthorScopu

    PV powered modular pulse generator with embedded energy storage for tumour treating fields

    No full text
    Tumour Treating Fields (TTF) exhibit great potential as a standalone cancer treatment, primarily due to minimal side effects. The solid-state power converter is the main component, shaping voltage pulses to impose electric fields on cells. This converter should provide control and flexibility to target infected tissues without harming healthy cells. The proposed system is powered by renewable green energy, addressing the global warming crisis by reducing exhaust emissions. The system, built in a scalable three-stage modular form, can generate a wide range of voltage pulses. These stages include the interleaved DCDC Maximum Power Point Tracking (MPPT) converter assisted by embedded energy storage, and both powering the third stage, a full-bridge pulse generation converter. The system undergoes investigation through a MATLAB/Simulink case study for three cascaded modules. Additionally, each module operates under different conditions, demonstrating the system’s functionality and reliability. Results show the system rapid response, and it functions properly even though modules are operated and investigated under different conditions and operating points
    corecore