4 research outputs found

    Switch in photocatalytic reaction selectivity: The effect of oxygen partial pressure on carbon-carbon bond dissociation over hydroxylated TiO₂(1 1 0) surfaces

    Get PDF
    Photocatalytic oxidation of ethanol over rutile TiO₂ (1 1 0) in the presence of O₂ have been studied with scanning tunneling microscopy and on-line mass spectrometry to elucidate the reaction mechanisms. The O₂ partial pressure has a direct impact on C–C bond cleavage, resulting in a shift of selectivity in gas phase products from acetaldehyde (dehydrogenation) to methyl radicals (C–C bond dissociation) with increasing pressure. This differs from the behavior of anatase TiO₂(1 0 1) single crystal, where at all investigated pressures negligible C–C bond dissociation occurs. The prevalence of the methyl radical species at high oxygen pressures is correlated with an increase in the surface population of an adsorbed species bound to Ti₅_c after the reaction, which are identified as formate moieties. Parallel XPS C1s, Ti2p and O1s further confirmed the assignment of surface population, by STM, to ethoxides at 300 K, in dark conditions (C1s at 286.7 and 285.4 eV attributed to –CHO₂–and–CH₃ groups respectively). After photoreaction, a large fraction of the surface was covered by formates (XPS C1 at 289.7 eV). This also correlated with the STM assignment where species spaced by 6 Å along the [0 0 1] direction and with a height of ca. 1.1 Å attributed to formates. Moreover the profile for CH₃ radical desorption in the gas phase as a function O₂ partial pressures correlated with the increasing surface population of formates. Analysis of the rate of methyl radical formation reveals fast and slow regimes, with photoreaction cross-sections between 10⁻¹⁷ cm² and 10⁻¹⁹ cm². The parallel channel of acetaldehyde production has a non-varying cross-section of ca. 2 × 10⁻¹⁹ cm². A schematic description of the two different reaction channels (dehydrogenation and C–C bond dissociation) is given and discussed

    Photo-catalytic hydrogen production over Au/g-C3N4:effect of gold particle dispersion and morphology

    Get PDF
    Metal/semiconductor interactions affect electron transfer rates and this is central to photocatalytic hydrogen ion reduction. While this interaction has been studied in great detail on metal oxide semiconductors, not much is known of Au particles on top of polymeric semiconductors. The effects of gold nanoparticle size and dispersion on top of g-C3N4 were studied by core and valence level spectroscopy and transmission electron microscopy in addition to catalytic tests. The as-prepared, non-calcined catalysts displayed Au particles with uniform dimension (mean particle size = 1.8 nm) and multiple electronic states: XPS Au 4f7/2 lines at 84.9 and 87.1 eV (each with a spin–orbit splitting of 3.6–3.7 eV). These particles, which did not show localized surface plasmon resonance (LSPR), before the reaction, doubled in size after the reaction giving a pronounced LSPR at about 550 nm. The effect of the heating environment on these particles (in air or in H2) was further investigated. While heating in H2 gave Au nanoparticles of different shapes, heating under O2 gave exclusively spherical particles. Similar activity towards photocatalytic hydrogen ion reduction under UV excitation was seen in both cases, however. XPS Au 4f analyses indicated that an increase in deposition time, during catalyst preparation, resulted in an increase in the initial fraction of oxidized gold particles, which were easily reduced under hydrogen. The valence band region for Au/gC3N4 was further studied in an effort to compare it to what is already known for Au/metal oxide semiconductors. A shift of over 2 eV for the Au 5d doublets was noticed between reduced and oxidized gold particles with mean particle sizes between 2 and 6 nm, which is consistent with the final state effect. A narrow range of gold loading for optimal catalytic performance was seen, where it seems that a density of one Au particle per 10 × 10 nm2 is the most suitable. Particle size and shape had a minor effect on performance, which may indicate the absence of a plasmonic effect on the reaction rate.Publisher PDFPeer reviewe

    On the role of CoO in CoOx/TiO2 for the photocatalytic hydrogen production from water in the presence of glycerol

    No full text
    The photocatalytic water splitting activity of nanocomposite photocatalysts of TiO2 with CoOx was studied under UV and visible light, and the catalysts were characterized by XRD, XPS, and UV–vis techniques. The presence of CoOx enhances the hydrogen production activity of TiO2 by five times at an optimal loading of . 2 wt. %. To investigate the role of CoOx, the photocatalytic activity was also studied under visible light and with different amounts of sacrificial agent. Our results indicate that the increasing activity was not due to increasing absorption of the visible light but most likely due to the role of CoOx nanoparticles as hole scavengers at the interface with TiO2. XPS Co2p analyses of CoO/TiO2 showed a considerable decrease in their signal after prolonged reaction time (44 h) when compared to that of the fresh catalyst. Because part of Co2+ cations is dissolved in solution, in neutral or acidic pH, the possible increase in the reaction rate upon their addition to TiO2 under UV excitation was investigated. No change in the reaction rate was observed upon, on purpose, addition Co2+ cations to TiO2 under UV excitation. Thus, one may rule out the reduction of Co2+ to Co0 with excited electrons within TiO2. In order to further increase the reaction rate, we have synthesized and tested a hybrid system composed of CoO and Pd nanoparticles (Pd wt. % = 0.1, 0.3, 0.5, and 1 wt. %) where 0.3 wt. % Pd – 2 wt. % CoO/TiO2 showed the highest rate

    Mechanism of Ethanol Photooxidation on Single-Crystal Anatase TiO 2

    No full text
    Despite the proven properties of the anatase phase of TiO2 related to photocatalysis, detailed mechanistic information regarding a photooxidation reaction has not yet been derived from single-crystal studies. In this work, we have studied the photooxidation of ethanol (as a prototype hole-scavenger organic molecule) adsorbed on the anatase TiO2(101) surface by STM and online mass spectrometry to determine the adsorbate species in the dark and under UV illumination in the presence of O2 and to extract kinetic reaction parameters under photoexcitation. The reaction rate for the photooxidation of ethanol to acetaldehyde was found to depend on the O2 partial pressure and surface coverage, where the order of the reaction with respect to O2 is close to 0.15. Carbon–carbon bond dissociation leading to the formation of CH3 radicals in the gas phase was found to be a minor pathway, which is contrary to the case of the rutile TiO2(110) single crystal. Our STM images distinguished two types of surface adsorbates upon ethanol exposure that can be attributed to its molecular and dissociative modes. A mixed adsorption is also supported by our DFT calculations, in which we determined similar energies of adsorption (Eads) for the molecular (1.11 eV) and dissociative (0.93 eV) modes. Upon UV exposure at (and above) 3 × 10–8 mbar O2, a third species was identified on the surface as a reaction product that can be tentatively attributed to acetate/formate species on the basis of C 1s XPS results. The kinetics of the initial oxidation steps were evaluated using the STM and mass spectrometry data
    corecore