4 research outputs found

    The development of an interface instrument for collecting elec-tromyography data and controlling continuous passive motion machine

    Get PDF
    There is a lack of research in using electromyography (EMG) signals to control a continuous passive motion (CPM) machine. This study aimed to develop an interface instrument for digitalising EMG signals and controlling a CPM machine. Methods: The proposed device was designed with the following: (1) a signal processing unit which converted the EMGs from analogue to digital for the controller; (2) a personal computer which stored and displayed the EMG signals; (3) an LCD device to display the running angle of the CPM; and (4) a microcontroller unit to control the input/output signals and process the algorithm, driving the CPM. To validate the reliability of the proposed system, a total of 600 EMG trials were collected from 10 healthy subjects by using the proposed device via the Delsys® TringoTM EMG system and simultaneously using the Vicon® motion capture system. Result: This proposed device was able to digitalise and process EMG signals from eight channels of muscles, and the signals were able to drive a CPM. The validated results showed that the digitalised EMG signals by the proposed device were statistically similar to and correlated with the signals by the Vicon system with a median correlation coefficient of 0.81, with the 25% and 75% range being 0.56–0.92 with all pairs (300 pairs of EMG trials) (p &lt; 0.001). Conclusions: This study confirmed that the developed device can digitalise EMG signals and drive a CPM as an applicable prototype that can work as an interface between EMG and CPM devices with high reliability.<br/

    Retro walking treadmill training reduces C—reactive protein levels in overweight and obese young adults: A randomized comparative study

    No full text
    Abstract Background and Aims Retro walking has been shown to acquire a greater metabolic cost, placing a higher cardiopulmonary demand on the body, when compared with forward walking at a similar speed. The aim of this study was to compare the effect of retro walking with that of forward walking on C‐reactive protein (CRP) levels, body mass index (BMI) and blood pressure (BP) and to understand the influence of independent factors namely systolic blood pressure (SBP), diastolic blood pressure (DBP) and BMI on CRP in untrained overweight and obese young adults. Methods This was a randomised controlled trial whereby 106 participants underwent either retro walking (n = 53) or forward walking (n = 53) treadmill training four times a week for 12 weeks before and after which CRP, BMI, and BP levels were measured. Comparison of the measured values before and after intervention and between the groups was done and influence of BMI and BP on CRP levels was determined. Results Both groups recorded a significant decrease (p < 0.001) in CRP, BMI, and BP levels postintervention. The participants who underwent retro walking training showed a significantly (p < 0.001) higher decrease in all the outcomes as compared with the forward walking group. C‐reactive protein levels were seen to be influenced by BMI and DBP. Conclusion Retro‐walking training leads to greater decrease in CRP, BMI, and BP when compared with forward walking, and CRP levels are influenced by BMI and DBP. Retro walking treadmill training can be used preferentially to bring about reduction in cardiovascular risk factors
    corecore