112 research outputs found

    Attack Type Agnostic Perceptual Enhancement of Adversarial Images

    Full text link
    Adversarial images are samples that are intentionally modified to deceive machine learning systems. They are widely used in applications such as CAPTHAs to help distinguish legitimate human users from bots. However, the noise introduced during the adversarial image generation process degrades the perceptual quality and introduces artificial colours; making it also difficult for humans to classify images and recognise objects. In this letter, we propose a method to enhance the perceptual quality of these adversarial images. The proposed method is attack type agnostic and could be used in association with the existing attacks in the literature. Our experiments show that the generated adversarial images have lower Euclidean distance values while maintaining the same adversarial attack performance. Distances are reduced by 5.88% to 41.27% with an average reduction of 22% over the different attack and network types

    The Effects of JPEG and JPEG2000 Compression on Attacks using Adversarial Examples

    Full text link
    Adversarial examples are known to have a negative effect on the performance of classifiers which have otherwise good performance on undisturbed images. These examples are generated by adding non-random noise to the testing samples in order to make classifier misclassify the given data. Adversarial attacks use these intentionally generated examples and they pose a security risk to the machine learning based systems. To be immune to such attacks, it is desirable to have a pre-processing mechanism which removes these effects causing misclassification while keeping the content of the image. JPEG and JPEG2000 are well-known image compression techniques which suppress the high-frequency content taking the human visual system into account. JPEG has been also shown to be an effective method for reducing adversarial noise. In this paper, we propose applying JPEG2000 compression as an alternative and systematically compare the classification performance of adversarial images compressed using JPEG and JPEG2000 at different target PSNR values and maximum compression levels. Our experiments show that JPEG2000 is more effective in reducing adversarial noise as it allows higher compression rates with less distortion and it does not introduce blocking artifacts

    LPMNet: Latent Part Modification and Generation for 3D Point Clouds

    Full text link
    In this paper, we focus on latent modification and generation of 3D point cloud object models with respect to their semantic parts. Different to the existing methods which use separate networks for part generation and assembly, we propose a single end-to-end Autoencoder model that can handle generation and modification of both semantic parts, and global shapes. The proposed method supports part exchange between 3D point cloud models and composition by different parts to form new models by directly editing latent representations. This holistic approach does not need part-based training to learn part representations and does not introduce any extra loss besides the standard reconstruction loss. The experiments demonstrate the robustness of the proposed method with different object categories and varying number of points. The method can generate new models by integration of generative models such as GANs and VAEs and can work with unannotated point clouds by integration of a segmentation module

    Adversarial Image Generation by Spatial Transformation in Perceptual Colorspaces

    Full text link
    Deep neural networks are known to be vulnerable to adversarial perturbations. The amount of these perturbations are generally quantified using LpL_p metrics, such as L0L_0, L2L_2 and L∞L_\infty. However, even when the measured perturbations are small, they tend to be noticeable by human observers since LpL_p distance metrics are not representative of human perception. On the other hand, humans are less sensitive to changes in colorspace. In addition, pixel shifts in a constrained neighborhood are hard to notice. Motivated by these observations, we propose a method that creates adversarial examples by applying spatial transformations, which creates adversarial examples by changing the pixel locations independently to chrominance channels of perceptual colorspaces such as YCbCrYC_{b}C_{r} and CIELABCIELAB, instead of making an additive perturbation or manipulating pixel values directly. In a targeted white-box attack setting, the proposed method is able to obtain competitive fooling rates with very high confidence. The experimental evaluations show that the proposed method has favorable results in terms of approximate perceptual distance between benign and adversarially generated images. The source code is publicly available at https://github.com/ayberkydn/stadv-torc

    Paired 3D Model Generation with Conditional Generative Adversarial Networks

    Full text link
    Generative Adversarial Networks (GANs) are shown to be successful at generating new and realistic samples including 3D object models. Conditional GAN, a variant of GANs, allows generating samples in given conditions. However, objects generated for each condition are different and it does not allow generation of the same object in different conditions. In this paper, we first adapt conditional GAN, which is originally designed for 2D image generation, to the problem of generating 3D models in different rotations. We then propose a new approach to guide the network to generate the same 3D sample in different and controllable rotation angles (sample pairs). Unlike previous studies, the proposed method does not require modification of the standard conditional GAN architecture and it can be integrated into the training step of any conditional GAN. Experimental results and visual comparison of 3D models show that the proposed method is successful at generating model pairs in different conditions.Comment: Published in ECCV 2018 Workshops, Springer, LNCS. Cite this paper as: Ongun C., Temizel A. (2019) Paired 3D Model Generation with Conditional Generative Adversarial Networks. In: Leal-Taixe L., Roth S. (eds) Computer Vision-ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol 11129. Springer, Cha

    Performance Analysis of Noise Subspace-based Narrowband Direction-of-Arrival (DOA) Estimation Algorithms on CPU and GPU

    Full text link
    High-performance computing of array signal processing problems is a critical task as real-time system performance is required for many applications. Noise subspace-based Direction-of-Arrival (DOA) estimation algorithms are popular in the literature since they provide higher angular resolution and higher robustness. In this study, we investigate various optimization strategies for high-performance DOA estimation on GPU and comparatively analyze alternative implementations (MATLAB, C/C++ and CUDA). Experiments show that up to 3.1x speedup can be achieved on GPU compared to the baseline multi-threaded CPU implementation. The source code is publicly available at the following link: https://github.com/erayhamza/NssDOACud

    Boosted Multiple Kernel Learning for First-Person Activity Recognition

    Get PDF
    Activity recognition from first-person (ego-centric) videos has recently gained attention due to the increasing ubiquity of the wearable cameras. There has been a surge of efforts adapting existing feature descriptors and designing new descriptors for the first-person videos. An effective activity recognition system requires selection and use of complementary features and appropriate kernels for each feature. In this study, we propose a data-driven framework for first-person activity recognition which effectively selects and combines features and their respective kernels during the training. Our experimental results show that use of Multiple Kernel Learning (MKL) and Boosted MKL in first-person activity recognition problem exhibits improved results in comparison to the state-of-the-art. In addition, these techniques enable the expansion of the framework with new features in an efficient and convenient way.Comment: First published in the Proceedings of the 25th European Signal Processing Conference (EUSIPCO-2017) in 2017, published by EURASI

    Deep Architectures for Content Moderation and Movie Content Rating

    Full text link
    Rating a video based on its content is an important step for classifying video age categories. Movie content rating and TV show rating are the two most common rating systems established by professional committees. However, manually reviewing and evaluating scene/film content by a committee is a tedious work and it becomes increasingly difficult with the ever-growing amount of online video content. As such, a desirable solution is to use computer vision based video content analysis techniques to automate the evaluation process. In this paper, related works are summarized for action recognition, multi-modal learning, movie genre classification, and sensitive content detection in the context of content moderation and movie content rating. The project page is available at https://github.com/fcakyon/content-moderation-deep-learning

    A Dimension Reduction Approach to Player Rankings in European Football

    Get PDF
    Player performance evaluation is a challenging problem with multiple dimensions. Football (soccer) is the largest sports industry in terms of monetary value and it is paramount that teams can assess the performance of players for both financial and operational reasons. However, this is a difficult task, not only because performance differs from position to position, but also it is based on competition, time played and team play-styles. Because of this, raw player statistics are not comparable across players and must be processed to facilitate a fair performance evaluation. Furthermore, teams may have different requirements and a generic player performance evaluation does not directly serve the particular expectations of different clubs. In this study, we provide a generic framework for estimating player performance and performing player-fit-to-criteria assessment, under different objectives, for left and right backs from competitions worldwide. The results show that the players who have ranked high have increased their transfer values and they have moved to suitable teams. Global nature of the proposed methodology expands the analyzed player pool, facilitating the search for outstanding players from all available competitions
    • …
    corecore