111 research outputs found

    The origin of exciton mass in a frustrated Mott insulator Na2_2IrO3_3

    Get PDF
    We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2_2IrO3_3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins

    Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2x_{2-x}Cex_xCuO4±δ_{4\pm\delta}

    Get PDF
    We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2x_{2-x}Cex_xCuO4_4 (LCCO) with dopings of x==0.08 (underdoped) and x==0.11 (optimally doped). Above Tc_c, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF\Delta_{AF}) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF\omega>2\Delta_{AF}) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static

    Confinement-Deconfinement Transition as an Indication of Spin-Liquid-Type Behavior in Na2_2IrO3_3

    Get PDF
    We use ultrafast optical spectroscopy to observe binding of charged single-particle excitations (SE) in the magnetically frustrated Mott insulator Na2_2IrO3_3. Above the antiferromagnetic ordering temperature (TNT_N) the system response is due to both Hubbard excitons (HE) and their constituent unpaired SE. The SE response becomes strongly suppressed immediately below TNT_N. We argue that this increase in binding energy is due to a unique interplay between the frustrated Kitaev and the weak Heisenberg-type ordering term in the Hamiltonian, mediating an effective interaction between the spin-singlet SE. This interaction grows with distance causing the SE to become trapped in the HE, similar to quark confinement inside hadrons. This binding of charged particles, induced by magnetic ordering, is a result of a confinement-deconfinement transition of spin excitations. This observation provides evidence for spin liquid type behavior which is expected in Na2_2IrO3_3.Comment: 5 pages, 3 figure

    Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy

    Full text link
    Scanning tunneling spectroscopic studies of Bi2Se3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level ({E_F}) and the Dirac point ({E_D}) and diverges as {E_F} approaches {E_D}. The Dirac-cone surface state of the host recovers within ~ 2{\AA} spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry.Comment: 6 pages, 6 figures. Accepted for fast-track publication in Solid State Communications (2012

    STM imaging of a bound state along a step on the surface of the topological insulator Bi2_2Te3_3

    Full text link
    Detailed study of the LDOS associated with the surface-state-band near a step-edge of the strong topological-insulator Bi2Te3, reveal a one-dimensional bound state that runs parallel to the stepedge and is bound to it at some characteristic distance. This bound state is clearly observed in the bulk gap region, while it becomes entangled with the oscillations of the warped surface band at high energy, and with the valence band states near the Dirac point. Using the full effective Hamiltonian proposed by Zhang et al., we obtain a closed formula for this bound state that fits the data and provide further insight into the general topological properties of the electronic structure of the surface band near strong structural defects.Comment: 5 pages, 4 figure

    Disorder enabled band structure engineering of a topological insulator surface

    Full text link
    Three dimensional topological insulators are bulk insulators with Z2\mathbf{Z}_2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunneling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. At native densities in the model Bi2_2X3_3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport

    STM imaging of impurity resonances on Bi2_2Se3_3

    Full text link
    In this paper we present detailed study of the density of states near defects in Bi2_2Se3_3. In particular, we present data on the commonly found triangular defects in this system. While we do not find any measurable quasiparticle scattering interference effects, we do find localized resonances, which can be well fitted by theory once the potential is taken to be extended to properly account for the observed defects. The data together with the fits confirm that while the local density of states around the Dirac point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of low-energy resonance state, the Dirac point is not locally destroyed. We discuss our results in terms of the expected protected surface state of topological insulators.Comment: 5 pages, 6 figure

    Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3

    Full text link
    We show that by Ca-doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppress the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc ~ 3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation of the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc ~ 5.5 K when reacted with Pd to form materials of the type PdxBi2Te3

    The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    Full text link
    The condensation of an electron superfluid from a conventional metallic state at a critical temperature TcT_c is described well by the BCS theory. In the underdoped copper-oxides, high-temperature superconductivity condenses instead from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime, appearing at a temperature TCDWT_{CDW} just above TcT_c. The near coincidence of TcT_c and TCDWT_{CDW}, as well the coexistence and competition of CDW and superconducting order below TcT_c, suggests that they are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp\tau_{qp}, as a function of temperature and magnetic field in underdoped HgBa2_{2}CuO4+δ_{4+\delta} (Hg-1201) and YBa2_{2}Cu3_{3}O6+x_{6+x} (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T)\tau_{qp}(T) exhibits a local maximum in a small temperature window near TcT_c that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that TcT_c marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs

    Dispersive effects in ultrafast non-linear phenomena

    Full text link
    It is a basic principle that an effect cannot come before the cause. Dispersive relations that follow from this fundamental fact have proven to be an indispensable tool in physics and engineering. They are most powerful in the domain of linear response where they are known as Kramers-Kronig relations. However when it comes to nonlinear phenomena the implications of causality are much less explored, apart from several notable exceptions. Here in this work we demonstrate how to apply the dispersive formalism to analyse the ultrafast nonlinear response in the context of the paradigmatic nonlinear Kerr effect. We find that the requirement of causality introduces a noticeable effect even under assumption that Kerr effect is mediated by quasi-instantaneous off-resonant electronic hyperpolarizability. We confirm this by experimentally measuring the time resolved Kerr dynamics in GaAs by means of a hybrid pump-probe Mach-Zehnder interferometer and demonstrate the presence of an intrinsic lagging between amplitude and phase responses as predicted by dispersive analysis. Our results describe a general property of the time-resolved nonlinear processes thereby highlighting the importance of accounting for dispersive effects in the nonlinear optical processes involving ultrashort pulses
    corecore