5 research outputs found

    Membrane Protein Phosphorylation and Hormone-Responsive Cation Cotransport in the Turkey Erythrocyte

    Get PDF

    Association of hypermagnesemia and blood pressure in the critically ill

    Get PDF
    BACKGROUND: Although magnesium is important in the biology of blood pressure regulation, little clinical data exist on the association of hypermagnesemia and blood pressure. METHOD:: We examined the association of hypermagnesemia and SBP in a cross-sectional study of 10 521 ICU patients from a single tertiary care medical center, 6% of whom had a serum magnesium above 2.6 mg/dl at time of admission. RESULTS:: In a multivariable analysis, hypermagnesemia was associated with SBP 6.2 mmHg lower [95% confidence interval (CI) -8.2, -4.2, P < 0.001] than in patients with admission values of serum magnesium 2.6 mg/dl or less. Each mg/dl increase in serum magnesium was associated with a decrease in SBP of 4.3 mmHg (95% CI -5.5, -3.1, P < 0.001). In addition, hypermagnesemic patients had a 2.48-fold greater likelihood (95% CI 2.06, 3.00, P < 0.001) of receiving intravenous vasopressors during the first 24h of ICU care, independent of admission SBP. CONCLUSION:: Our findings add support to the biologic importance of magnesium regulation in blood pressure control.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant 2R01 EB001659

    Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis

    Get PDF
    Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, \u3b3-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients
    corecore