293 research outputs found

    Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000

    Get PDF
    The Southeast Crater of Mount Etna (Italy) was characterized by a violent eruptive activity between 26 January and 24 June 2000. This activity produced 64 lava fountain episodes with repose periods from 3 hours to 10 days. We estimated a volume of about 15–20 106 m3 lava and at least 2–3 106 m3 of tephra. We compared the paroxysmal volcanic activity to its associated seismic signature: The high number of events highlighted a strict correlation between tremor and volcanic activity. Seismic and volcanic characteristics, such as the frequency of occurrence, the duration of lava fountains and the associated tremor energy, suggested the subdivision of the studied period into two stages separated by the 20 February event. Combining volcanic with seismic data, we observed some useful relationships among lava fountain height, sustained column height and Reduced Displacement; in addition, we found that the entire episode was well correlated with the duration of the amplitude increase. Computing the tremor energy linked to each event, the total energy associated with lava fountains episodes results in 76% of the energy released during the whole period. Finally, the different ratios among the overall spectral amplitude of the seismic signals of the stations located at different altitudes suggested to us the elaboration of a simple qualitative model to explain the dynamic behavior of the tremor source during the whole episode

    Sismicità all’Etna dal 1989 al 2010: evidenze sull’evoluzione spazio-temporale dell’attività sismica

    Get PDF
    Il Monte Etna, uno dei più attivi vulcani basaltici tra i più monitorati al mondo, è sede di una notevole attività sismica e vulcanica. Esso è ubicato in Sicilia orientale in un complesso quadro geodinamico, dove le principali strutture tettoniche regionali giocano un ruolo chiave nei processi dinamici del vulcano. La sismicità dell’Etna si manifesta con un elevato rate di terremoti di bassa e moderata energia che, a volte, a causa dell’estrema superficialità della sorgente, provocano danni ai centri abitati prossimi all’area epicentrale. Il monitoraggio sistematico dell’attività sismica etnea è effettuato sin dal 1989, mediante una rete sismica locale permanente che nel tempo è stata oggetto di importanti miglioramenti. La prima configurazione di rete era costituita da circa 10 stazioni analogiche con sensori a corto periodo gestita dall’Istituto Internazionale di Vulcanologia (IIV-CNR). Nel 1994, una rete sismica costituita da circa 40 stazioni (analogiche con sensori a corto periodo) fu installata sull’Etna nell’ambito del Progetto Poseidon. Nel 2001, le reti gestite dall’IIV-CNR e dal Progetto Poseidon confluirono nell’Istituto Nazionale di Geofisica e Vulcanologia (INGV); attualmente la rete sismica, costituita da circa 50 stazioni digitali equipaggiate con sismometri broadband a tre componenti, è gestita dalla Sezione di Catania dell’INGV. Nel periodo 1989-1999, il catalogo dei terremoti risulta costituito da circa 2000 eventi con soglia di completezza per magnitudo pari a 2.0; dal 1999 ad oggi contiene circa 6000 terremoti con soglia di completezza per magnitudo 1.5. La capacità di detezione della rete è migliorata nel tempo permettendo di registrare e localizzare anche gli eventi meno energetici (M≥1.0). In questo lavoro, vengono presentati i caratteri predominanti della sismicità etnea negli ultimi 20 anni, con un maggiore dettaglio della distribuzione spazio-temporale della sismicità verificatasi dal 1999. L’analisi della attività sismica rappresenta un utile strumento per l’interpretazione delle dinamiche che hanno contraddistinto numerose ed importanti eruzioni (2001, 2002-03, 2004, 2006, 2008-09). In particolare, la variazione del rilascio energetico della sismicità ha contribuito in maniera significativa ad identificare i probabili processi geodinamici legati alla ricarica del sistema magmatico del vulcano. La distribuzione spaziale della sismicità ha consentito di evidenziare inoltre l’esistenza di diverse aree sismogenetiche caratterizzate da un differente rate sismico, profondità focali e cinematica delle strutture associate. Infine, osservando le caratteristiche della sismicità nel lungo periodo, differenti settori del vulcano sono risultati maggiormente attivi in relazione ai più importanti recenti eventi eruttivi

    Relationship between surface temperatures and seismic activity at Vulcano, Aeolian Island (Italy)

    Get PDF
    Time-series acquired during last years by surface monitoring parameters are compared, and the results are discussed, following a theoretical approach. Surface parameters are fluid temperature, soil temperatures and seismic activity at La Fossa of Vulcano. Discussed periods are 1998 and from 2004 to 2007, when time relationship between changes of the heat flow from the ground and seismic activity, resulted worth noting. Earthquakes originating in the area of Vulcano are associated with both fracturing and degassing mechanisms. The formers are related to the activity of tectonic structures; while the latter are connected to fluid dynamics within the interior of the volcanic apparatus. In November 1998 seismic activity at La Fossa sharply increased: Five events were registered, with seismic signals of typical faulting earthquakes, triggered by mechanism of shear fracturing and focal depths ranging 1-4 km. Fumaroles temperatures, recorded by continuous monitoring system of INGV - Palermo, showed a growing trend since October to November 1998, highlighting a big increase of heat transfer during the period, and also the soil temperature, out of the fumaroles field showed a marked increase. Fumaroles temperatures heralded the increase of heat and energy flow during a pre-seismic period of about 1 month. The transient variation of surface release reflect an excited state of the system and may have many different causes, not directly related to the magma. Indeed, stress drops generated by small fracturing earthquakes, introduce a significant perturbation in the system resulting in a relevant production of mass and energy flow. Until these flows counteract every stress gradient, they support stationary state of the system. The observed time relationships only allow a qualitative discussion about cause and effects, but doesn’t allow any quantitative evaluation. Pressure transients generate anomalies (flows of matter, differential in heat flows, chemical reaction rates) whose time frame is specific, depending on many possible processes and path-ways. Fluid phases, along fumarolic conduits, reach the surface faster than the co-genetic earthquake, as the earthquake is embedded in a strain transient that broadly exceeds the time-space frame of the seismic transient (Lomnitz, 1994). On the other hand, in a volcano-tectonic context, different energy flows can either be a cause, either an effect of perturbation, depending on depth of their primary source. Thus, in some instances the strain transient related to local earthquakes produces anomalous chemical flows, while, in other instances the local seismic activity may be produced by chemical flows from the magmatic source. Following a period of lower energy release, other 3 anomalous periods were observed from November 2004, either in the seismic release and in the surface heat flow, even out from fumaroles. So far, the monitored sites resulted very sensitive to minor perturbations of the system. The comparative analysis of different time-series supplies information related to perturbations of the state variables, useful to verify conceptual framework and to better define “classical” and “new” monitoring techniques for volcanic, as well as seismic surveillance

    Structural features of the Pernicana Fault (M. Etna, Sicily, Italy) inferred by high precise location of the microseismicity

    Get PDF
    The north-eastern flank of Mt. Etna is crossed by an important and active tectonic structure, the Pernicana Fault having a mean strike WNW–ESE. It links westward to the active NE Rift and seems to have an important role in controlling instability processes affecting the eastern flank of the volcano. Recent studies suggest that Pernicana Fault is very active through sinistral, oblique-slip movements and is also characterised by frequent shallow seismicity (depth < 2 km bsl) on the uphill western segment and by remarkable creeping on the downhill eastern one. The Pernicana Fault earthquakes, which can reach magnitudes up to 4.2, sometimes with coseismic surface faulting, caused severe damages to tourist resorts and villages along or close this structure. In the last years, a strong increase of seismicity, also characterized by swarms, was recorded by INGV-CT permanent local seismic network close the Pernicana Fault. A three-step procedure was applied to calculate precise hypocentre locations. In a first step, we chose to apply cross-correlation analysis, in order to easily evaluate the similarity of waveforms useful to identify earthquakes families. In a second step, we calculate probabilistic earthquake locations using the software package NONLINLOC, which includes systematic, complete grid search and global, non-linear search methods. Subsequently, we perform relative relocation of correlated event pairs using the double-difference earthquake algorithm and the program HypoDD. The double-difference algorithm minimizes the residuals between observed and calculated travel time difference for pairs of earthquakes at common stations by iteratively adjusting the vector difference between the hypocenters. We show the recognized spatial seismic clusters identifying the most active and hazarding sectors of the structure, their geometry and depth. Finally, in order to clarify the geodynamic framework of the area, we associate these results with calculated focal mechanisms for the most energetic earthquakes

    Volcanic tremor at Mt. Etna, Italy, preceding and accompanying the eruption of July-August, 2001

    Get PDF
    The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity

    Caratterizzazione sismica del sistema strutturale Pernicana - Provenzana (settore NE dell'Etna) attraverso l'utilizzo di differenti tecniche di rilocalizzazione.

    Get PDF
    Il fianco nord-orientale dell’Etna è interessato da un noto sistema strutturale denominato Pernicana-Provenzana, che ha un andamento WNW–ESE. Esso è collegato ad ovest ad un altro importante elemento strutturale, il Rift di Nord-Est, che mostra avere un ruolo importante nel controllo dei fenomeni di instabilità del fianco orientale del vulcano. La sismicità associata a questo sistema strutturale è di tipo superficiale (max 2-3 km b.s.l.) e rilevanti fenomeni di creeping sono rilevabili sul suo segmento orientale. I terremoti associati a questo sistema di faglie, che possono raggiungere magnitudo sino a 4.3, qualche volta con fenomeni di fagliazione superficiale, hanno provocato danni importanti alle principali strutture alberghiere ed ai paesi ubicati in prossimità della struttura. Nel presente lavoro, sono riportati i risultati di uno studio di dettaglio della sismicità localizzata lungo tale sistema strutturale, nel periodo 1999-2009. I terremoti registrati dalla rete sismica permanente dell’Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, localizzati con un modello 1D utilizzando l’algoritmo Hypoellipse (Gruppo Analisi Dati Sismici, 2010), sono stati rilocalizzati applicando due differenti tecniche di localizzazione: NonLinLoc sviluppato da Lomax et al. (2000) e HypoDD proposto da Waldhauser & Ellsworth (2000). La prima metodologia è basata su un processo di ricerca globale, nello spazio 3D, dei parametri di localizzazione che possono essere ottenuti utilizzando diversi algoritmi. Il metodo HypoDD, che non prevede l’utilizzo di un modello 3D, è invece basato sull’algoritmo della doppia differenza che minimizza i residui tra le differenze dei traveltime osservati e calcolati per coppie di terremoti a stazioni comuni. L’applicazione di tali tecniche ha permesso di ottenere localizzazioni ipocentrali di migliore qualità, fondamentali per la caratterizzazione sismica della struttura. L’applicazione di queste differenti metodologie ha permesso di evidenziare che il sistema strutturale Pernicana- Provenzana risulta composto da segmenti caratterizzati da differenti rilasci di energia sismica. Sono stati individuati due cluster principali di terremoti, la cui distribuzione spaziale ha evidenziato un differente verso nell’immersione dei piani di faglia collegabili a questa sismicità. Infine, l’applicazione di tecniche di cross-correlazione delle forme d’onda registrate nel periodo indagato ha consentito di individuare “famiglie” di terremoti. L’analisi spazio – temporale delle famiglie individuate ha evidenziato per alcune di esse, una ricorrenza temporale ed ha permesso di ipotizzare che l’applicazione di un campo di stress sul sistema Pernicana-Provenzana potrebbe essere capace di attivare le stesse sorgenti sismiche in differenti periodi

    Evolution of dwarf galaxies hosting GW150914-like events

    Get PDF
    Here we present a detailed analysis of the properties and evolution of different dwarf galaxies, candidates to host the coalescence of black hole binary systems generating GW150914-like events. By adopting a novel theoretical framework coupling the binary population synthesis code SEBA with the Galaxy formationmodel GAMESH, we can investigate the detailed evolution of these objects in awell-resolved cosmological volume of 4 cMpc, having aMilkyWay (MW)- like galaxy forming at its centre. We identify three classes of interesting candidate galaxies: MW progenitors, dwarf satellites, and dwarf galaxies evolving in isolation. We find that (i) despite differences in individual histories and specific environments the candidates reduce to only nine representative galaxies; (ii) among them, 3c44 per cent merge into the MW halo progenitors by the redshift of the expected signal, while the remaining dwarfs are found as isolated or as satellites of the MW and their evolution is strongly shaped by both peculiar dynamical history and environmental feedback; (iii) a stringent condition for the environments where GW150914-like binaries can form comes from a combination of the accretion history of their dark matter haloes and the radiative feedback in the high-redshift universe; and (iv) by comparing with the observed catalogues from the DGS and ALLSMOG surveys we find two observed dwarfs respecting the properties predicted by our model. We finally note how the present analysis opens the possibility to build future strategies for host galaxy identification

    Tornillos at Vulcano: Clues to the dynamics of the hydrothermal system

    Get PDF
    The number of tornillo events has recently increased at the Vulcano Island, Italy. While only 15 tornillos were recorded during 2004–2006, 584 events occurred in 2007–2008. They were located just below La Fossa Crater at depths ranging between 0.1 and 1 km b.s.l. During two intervals in 2007–2008 increases in the number of tornillos took place at the same time as temperature and geochemical anomalies were observed. The spectral content of the tornillos, generally characterized by one–two dominant spectral peaks near 6 and 10 Hz, varied over time, with changes also noted in the quality factors. The simplest source mechanism proposed for tornillos is the free eigenvibration of a fluid volume within a crack or a conduit. Based on this model, we propose a causal relationship between the temperature and geochemical anomalies and the increases in numbers of tornillos. As the amount of hydrothermal fluids increases during the anomalies, the upward flux of fluids grows. The consequent changes in the pressure, temperature and dynamics of the system of cracks and conduits result in the generation of tornillos. Based on the fluid-filled crack/conduit model, the shallow depths of the sources and the values of the quality factors, the fluid within the resonant crack/conduit was inferred to be an ash–gas or water droplet–gas mixture. Moreover, the observed variations in the wavefield can be caused by small changes in the location of the source, in the source mechanism, or in the medium in between the source and the seismic station. Finally, another peculiar feature of tornillos is the amplitude modulation that can be explained as a result of a beating phenomenon.Published377-3933V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcaniciJCR Journalreserve

    Surface and deep strain at Mt. Etna volcano (Sicily, Italy) during the 2003-2004 inflation phase

    Get PDF
    We carried out a study of the seismicity and ground deformation occurred on Mount Etna volcano after the end of 2002-2003 eruption and before the onset of 2004-2005 eruption, and recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania and by the geodetic surveys carried out in July 2003 and July 2004 on the GPS network. We provided a description of seismicity rate and main seismic swarms which occurred during the investigated period. Mostly of the earthquakes are clustered in two main clusters located on the north-eastern (E-W aligned and above the sea level) and south-eastern (NW-SE aligned and from 3 to 8 Km below the sea level) sectors of the volcano. in order to better understand the kinematic processes of the volcano, the 3D relocation were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The focal solutions on the north-eastern sector show clear left-lateral kinematics along an E-W fault plane, in good agreement with the Pernicana fault kinematics. The focal solutions on the south-eastern sector show a main right-lateral kinematics along a NW-SE fault plane evidencing a roughly E-W oriented compression coupled with a N-S extension. Surface ground deformation affecting Mt Etna and measured by GPS surveys highlights a marked inflation during the same period, mainly visible on the western and upper sectors of the volcano; on the contrary, its eastern side shows an exceptionally strong seawards and downwards motion with displacements ranging from 5 up to 10 cm along the coastline. The 2D geodetic strain tensor distribution was calculated on a 1.5 km spaced grid, in order to detail the strain axes orientation above the entire GPS network. The results of the 2D geodetic strain calculation evidenced the very strong extension (mainly along an- ENE-WSW axis) of the summit area that was already considered as the cause of the 2004-2005 eruption; this main ENE-WSW extension continues throughout the eastern flank, but here coupled with a WNW-ESE contraction, meaning a right-lateral shear along a NW-SE oriented fault plane. The opposite deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation has to be interpreted by considering the different depths of the two signals. Seismic activity along the NW-SE alignment is, in fact, located between 3 and 8 km b.s.l. and it is then affected by the very strong additional EW compression induced by the inflating source located by inverting GPS data just westwards and at the same depth. Ground deformation measured by GPS at the surface, on the contrary, is mainly affected by the shallower dynamics of the eastern flank, fastly moving towards East that produces an opposite (extension) E-W strain. It is also meaningful, confirming the decoupling between the surface and deep strain, that all the seismicity of the south-eastern sector lies beneath the sliding plane already modeled by geodetic data for the same time interval and for the 2004-2006 period and also beneath the deeper one previously modeled during the 1993-1998 period when the eastern flank velocity was much slower
    corecore