65 research outputs found

    Sex-change rules, stock dynamics, and the performance of spawning-per-recruit measures in protogynous stocks

    Get PDF
    Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change

    Predation risk reduces a female preference for heterospecific males in the green swordtail

    Get PDF
    The presence of a predator can result in the alteration, loss or reversal of a mating preference. Under predation risk, females often change their initial preference for conspicuous males, favouring less flashy males to reduce the risk of being detected by predators. Previous studies on predator-induced plasticity in mate preferences have given females a choice between more and less conspicuous conspecific males. However, in species that naturally hybridize, it is also possible that females might choose an inconspicuous heterospecific male over a conspicuous conspecific male under predation risk. Our study addresses this question using the green swordtail (Xiphophorus helleri) and the southern platyfish (Xiphophorus maculatus), which are sympatric in the wild. We hypothesized that X. helleri females would prefer the sworded conspecific males in the absence of a predator but favour the less conspicuous, swordless, heterospecific males in the presence of a predator. Contrary to our expectation, females associated more with the heterospecific male than the conspecific male in the control (no predator) treatment, and they were non-choosy in the predator treatment. This might reflect that females were attracted to the novel male phenotype when there was no risk of predation but became more neophobic after predator exposure. Regardless of the underlying mechanism, our results suggest that predation pressure may affect female preferences for conspecific versus heterospecific males. We also found striking within-population, between-individual variation in behavioural plasticity: females differed in the strength and direction of their preferences, as well as in the extent to which they altered their preferences in response to changes in perceived predation risk. Such variation in female preferences for heterospecific males could potentially lead to temporal and spatial variation in hybridization rates in the wild

    The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish

    Get PDF
    Fisheries models have traditionally focused on patterns of growth, fecundity, and survival of fish. However, reproductive rates are the outcome of a variety of interconnected factors such as life-history strategies, mating patterns, population sex ratio, social interactions, and individual fecundity and fertility. Behaviorally appropriate models are necessary to understand stock dynamics and predict the success of management strategies. Protogynous sex-changing fish present a challenge for management because size-selective fisheries can drastically reduce reproductive rates. We present a general framework using an individual-based simulation model to determine the effect of life-history pattern, sperm production, mating system, and management strategy on stock dynamics. We apply this general approach to the specific question of how size-selective fisheries that remove mainly males will impact the stock dynamics of a protogynous population with fixed sex change compared to an otherwise identical dioecious population. In this dioecious population, we kept all aspects of the stock constant except for the pattern of sex determination (i.e. whether the species changes sex or is dioecious). Protogynous stocks with fixed sex change are predicted to be very sensitive to the size-selective fishing pattern. If all male size classes are fished, protogynous populations are predicted to crash even at relatively low fishing mortality. When some male size classes escape fishing, we predict that the mean population size of sex-changing stocks will decrease proportionally less than the mean population size of dioecious species experiencing the same fishing mortality. For protogynous species, spawning-per-recruit measures that ignore fertilization rates are not good indicators of the impact of fishing on the population. Decreased mating aggregation size is predicted to lead to an increased effect of sperm limitation at constant fishing mortality and effort. Marine protected areas have the potential to mitigate some effects of fishing on sperm limitation in sex-changing populations

    An ecosystem-based approach to management: using individual behaviour to predict the indirect effects of Antarctic krill fisheries on penguin foraging

    Get PDF
    Summary 1. Changes in species\u27 abundance and distributions caused by human disturbances can have indirect effects on other species in a community. Although ecosystem approaches to management are becoming increasingly prevalent, they require a fuller understand- ing of how individual behaviour determines interactions within and between species. 2. Ecological interactions involving krill are of major importance to many species within the Antarctic. Despite extensive knowledge of the ecosystem that they occupy, there is still incomplete understanding of the links between species and the effect of environmental conditions on these interactions. In this study, we extended a behavioural model used previously to understand the interactions between penguins and krill to determine the indirect effect of krill fisheries on penguin foraging success and behaviour in adjacent breeding sites. 3. Increased fishing pressure offshore is predicted to reduce penguin food intake. Given the documented links between krill and penguins, this also leads to a prediction of decreased penguin survival and reproduction. Krill behaviour is predicted to cause stronger effects of krill fisheries than explained solely by the percentage of biomass removed. Environmental conditions that decrease krill growth rates or cause krill to spend time in deeper water are also predicted to increase the magnitude of the effect of fishing on penguin success. We show that changes in penguin foraging behaviour can be used to assess the impact of local fisheries on penguin reproductive success. 4. Synthesis and applications . These results demonstrate that an understanding of predator-prey interactions, indirect effects between species, and individual behaviour is imperative to our ability to manage populations. We describe a general method to use what is known about ecological and evolutionary processes with species-specific information to predict the response of organisms to novel situations. We further show how individual behaviour can be used to assess the impact of human disturbance on ecosystems

    Multispecies colour polymorphisms associated with contrasting microhabitats in two Mediterranean wrasse radiations.

    Get PDF
    Intraspecific colour polymorphisms (CPs) present unique opportunities to study fundamental evolutionary questions, such as the link between ecology and phenotype, mechanisms maintaining genetic diversity and their putative role in speciation. Wrasses are highly diverse in ecology and morphology and harbour a variety of colour-polymorphic species. In the Mediterranean Sea, wrasses of the tribe Labrini evolved two species radiations each harbouring several species with a brown and a green morph. The colour morphs occur in complete sympatry in mosaic habitats with rocky outcrops and Neptune grass patches. Morph-specific differences had not been characterized yet and the evolutionary forces maintaining them remained unknown. With genome-wide data for almost all Labrini species, we show that species with CPs are distributed across the phylogeny, but show evidence of hybridization. This suggests that the colour morphs are either ancient and have been lost repeatedly, that they have evolved repeatedly or have been shared via hybridization. Focusing on two polymorphic species, we find that each colour morph is more common in the microhabitat providing the best colour match and that the morphs exhibit additional behavioural and morphological differences further improving crypsis in their respective microhabitats. We find little evidence for genetic differentiation between the morphs in either species. Therefore, we propose that these colour morphs represent a multi-niche polymorphism as an adaptation to the highly heterogeneous habitat. Our study highlights how colour polymorphism (CP) can be advantageous in mosaic habitats and that Mediterranean wrasses are an ideal system to study trans-species polymorphisms, i.e. polymorphisms maintained across several species, in adaptive radiations

    Uncertainty in territory quality affects the benefits of usurpation in a Mediterranean wrasse

    No full text
    Individuals should defend sites when the expected benefits of the territory exceed the cost of defense. However, if territory qulaity is unpredictable or difficult to assess, the expected pattern of territorial behavior is less clear. In a Mediterranean wrasse, Symphodus ocellatus, mating success is skewed with 2% of nesting males getting more than 20% of the spawning success. Yet, variation in mating success is not explained by any known physical characteristic of males or their territories. Instead, females prefer nests with a recent history of mating success because males are less likely to desert the offspring she leaves behind. Thus, territory quality is transient and determined by interactions between the sexes. I measured the frequency of territorial takeovers and the uncertainty in mating success among days at a nest. Observations indicated that S. ocellatus males usurped their neighbor's successful nests when males were unsuccessful and larger than their successful neighbor. Sites that achieved mating success had a significantly higher probability (0.84) of remaining sucessful between consecutive days than unsuccessful territories had of becoming successful (0.30). Unsuccessful males obtained higher and more certain fitness returns if they usurped a successful neighbor's territory. Interactions within and between the sexes drive uncertainty in success, which influences territorial behavior in this species. Copyright 2004.territoriality; stochasticity; labridae; sexual conflict; assessment
    • …
    corecore