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Summary

1.

 

Changes in species’ abundance and distributions caused by human disturbances can
have indirect effects on other species in a community. Although ecosystem approaches
to management are becoming increasingly prevalent, they require a fuller understand-
ing of how individual behaviour determines interactions within and between species.

 

2.

 

Ecological interactions involving krill are of major importance to many species
within the Antarctic. Despite extensive knowledge of the ecosystem that they occupy,
there is still incomplete understanding of  the links between species and the effect of
environmental conditions on these interactions. In this study, we extended a behavioural
model used previously to understand the interactions between penguins and krill to
determine the indirect effect of krill fisheries on penguin foraging success and behaviour
in adjacent breeding sites.

 

3.

 

Increased fishing pressure offshore is predicted to reduce penguin food intake. Given
the documented links between krill and penguins, this also leads to a prediction of
decreased penguin survival and reproduction. Krill behaviour is predicted to cause
stronger effects of krill fisheries than explained solely by the percentage of biomass
removed. Environmental conditions that decrease krill growth rates or cause krill to
spend time in deeper water are also predicted to increase the magnitude of the effect of
fishing on penguin success. We show that changes in penguin foraging behaviour can be
used to assess the impact of local fisheries on penguin reproductive success.

 

4.

 

Synthesis and applications

 

. These results demonstrate that an understanding of
predator–prey interactions, indirect effects between species, and individual behaviour
is imperative to our ability to manage populations. We describe a general method to
use what is known about ecological and evolutionary processes with species-specific
information to predict the response of organisms to novel situations. We further show
how individual behaviour can be used to assess the impact of human disturbance on
ecosystems.
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Introduction

 

Interactions between species influence population
dynamics and cause indirect ecological effects. Tradi-
tionally management has focused on single species (King
1995; Quinn & Deriso 1999; Haddon 2001; Jennings,

Kaiser & Reynolds 2001). However, changes in the
abundance and size or spatial distribution of a single
species can have cascading effects on a wide variety
of  other species (Yodzis 1994; Estes 1996; Croll &
Tershy 1998; Estes 

 

et al

 

. 1998; Mangel & Switzer 1998;
Nicol & Endo 1999; Gill, Norris & Sutherland
2001; Marin & Delgado 2001; Lester & Harmsen 2002;
Ormerod 2002) so that community interactions should
ideally be considered even when managing individual
species. As a result, ecosystem approaches to manage-
ment are becoming increasingly prevalent (Constable
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et al

 

. 2000; Boyd & Murray 2001; Schneider 2001;
Ormerod 2002). At the heart of an ecosystem approach
must be an understanding of the interactions between
the species of interest and how these interactions are
influenced directly and indirectly by environmental
conditions, the abundance and distribution of each
species, and interactions with non-target species. How-
ever, to a great extent ecosystem approaches to man-
agement have not considered how individual behaviour
and behavioural plasticity affects species’ interactions.

Managers and ecologists alike have trouble knowing
how to apply these general ideas to their specific sys-
tems because community interactions can be extremely
complex and better management tools are required. A
general theoretical framework now exists for examin-
ing the effect of behavioural and evolutionary interac-
tions within and between species on ecological patterns
(Alonzo 2002). We have demonstrated how this
approach can be used to increase understanding of
interactions between predators and prey when applied
to a specific system (Alonzo, Switzer & Mangel 2003).
In this paper, we demonstrate how this general method
can be applied to a specific system to address a specific
management problem.

Antarctic krill 

 

Euphausia superba

 

 Dana plays an
extremely important role in the Antarctic. Most organ-
isms in the Antarctic are one or two trophic levels away
from krill. They are one of the most abundant food
sources for a variety of species, and many species rely
on them almost entirely (Croxall 

 

et al

 

. 1985; Miller &
Hampton 1989; Trivelpiece 

 

et al

 

. 1990; Smith 

 

et al

 

.
1995; Hill 

 

et al

 

. 1996; Reid 

 

et al

 

. 1996; Loeb 

 

et al

 

. 1997;
Croll & Tershy 1998; Mangel & Switzer 1998; Nicol &
Endo 1999; Constable 

 

et al

 

. 2000; Boyd & Murray
2001; Charrassin & Bost 2001; Marin & Delgado 2001;
Boyd 2002). As a result, understanding krill and their
ecological interactions is of utmost importance to our
understanding of most Antarctic species.

There has been concern that commercial krill fisher-
ies in the Antarctic may have indirect effects on krill
predators (Ichii, Naganobu & Ogisima 1996; Croll &
Tershy 1998; Mangel & Switzer 1998; Boyd & Murray
2001; Marin & Delgado 2001). The Convention for the
Conservation of Antarctic Marine Living Resources
(CCAMLR) requires an ecosystem approach to man-
aging the Antarctic fisheries (Constable 

 

et al

 

. 2000).
With increasing interest in krill fisheries and concern
about managing the ecosystem as a whole, a mechan-
istic and predictive understanding of their links with
other species is imperative.

Antarctic penguin species are land-based during
their reproductive period and many of them rely on
krill to feed both themselves and their offspring during
this time (Trivelpiece, Trivelpiece & Volkman 1984;
Trivelpiece 

 

et al

 

. 1986; Trivelpiece, Trivelpiece &
Volkman 1987; Davis & Darby 1990; Trivelpiece 

 

et al

 

.
1990; Hill 

 

et al

 

. 1996; Reid 

 

et al

 

. 1996; Croll & Tershy
1998; Mangel & Switzer 1998; Boyd & Murray 2001;
Charrassin & Bost 2001; Marin & Delgado 2001).

During the breeding season, penguins are central place
foragers, returning to their nesting sites between forag-
ing trips (Davis & Darby 1990; Mangel & Switzer 1998).
Clear links have been shown between krill abundance
and penguin survival and reproduction (Trivelpiece,
Trivelpiece & Volkman 1984; Croxall 

 

et al

 

. 1985;
Trivelpiece 

 

et al

 

. 1986; Trivelpiece, Trivelpiece &
Volkman 1987; Trivelpiece 

 

et al

 

. 1990; Reid 

 

et al

 

. 1996;
Loeb 

 

et al

 

. 1997; Boyd & Murray 2001; Charrassin &
Bost 2001). Evidence also exists that the distribution
of penguins between inshore and offshore regions is
correlated with krill abundance patterns (T. Ichii, personal
communication). Thus, penguin foraging behaviour
is plastic and depends on krill distributions. As a result,
we would expect both penguin behaviour and penguin
food availability during reproduction to be impacted
by fishery-induced changes in local krill abundance.

Due to their importance in the Antarctic ecosystem,
krill are relatively well studied and much is known
about their physiology, reproduction and patterns of
distribution (Marr 1962; Mackintosh 1972; Mauchline
1980; Miller & Hampton 1989). Diel vertical migra-
tion, group formation and distribution of Antarctic
krill (Mauchline 1980; Morris, Ward & Clarke 1983;
Morris 

 

et al

 

. 1984; Hamner & Hamner 2000; Ritz
2000) will depend on individual size, time during the
season, environmental conditions (such as phyto-
plankton abundance and water temperature) and
predation risk (Quetin & Ross 1992; Quetin 

 

et al

 

. 1996;
Ross, Quetin & Lascara 1996; Ross, Quetin & Haberman
1998; Alonzo & Mangel 2001; Alonzo, Switzer &
Mangel 2003). Krill distributions can only be under-
stood by considering the size and situation-dependent
migration pattern of individuals. For example, if  krill
move into deeper and less accessible water, penguins
may experience decreased feeding rates even in the
absence of a decrease in overall krill biomass. There-
fore, krill behaviour could lead to a decrease in penguin
food intake that is even greater than expected by the
amount of krill biomass removed.

Life-history and behavioural models can help pre-
dict a species’ response to novel situations (Mangel &
Switzer 1998; Pettifor 

 

et al

 

. 2000; Stillman 

 

et al

 

. 2000;
Alonzo & Mangel 2001; Forde 2002). Penguin foraging
patterns and krill behaviour are not well studied. How-
ever, it is possible to use general knowledge of habitat
selection (Brown 1990; Mangel 1990; Rosenzweig 1991;
Brown 1998), foraging behaviour (Krebs 

 

et al

 

. 1977;
Pyke, Pulliam & Charnov 1977; Krebs, Kacelnik & Taylor
1978; Cowie & Krebs 1979; Schoener 1987; Mangel
& Clark 1988; McNamara, Merad & Houston 1991;
Newman 1991; Houston, McNamara & Hutchinson
1993; Bouskila 1995; Charnov & Parker 1995; Houston
1996; Houston & McNamara 1997; Luttbeg & Schmitz
2000; Stillman 

 

et al

 

. 2000) and interactions between
predators and prey (Sih 

 

et al

 

. 1985; Kacelnik, Krebs &
Berstein 1992; Sih 1998; Lima 2002) in combination
with the extensive knowledge of  krill and penguin
biology (Marr 1962; Mauchline 1980; Trivelpiece,
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Trivelpiece & Volkman 1984; Trivelpiece 

 

et al

 

. 1986;
Trivelpiece, Trivelpiece & Volkman 1987; Davis & Darby
1990; Trivelpiece 

 

et al

 

. 1990; Hill 

 

et al

 

. 1996; Reid 

 

et al

 

.
1996; Croll & Tershy 1998; Mangel & Switzer 1998;
Nicol & Endo 1999; Charrassin & Bost 2001; Marin &
Delgado 2001) to increase our understanding of their
interspecific links and predict their response to fishing.

In a previous paper (Alonzo, Switzer & Mangel 2003)
we focused on the effect of long-term evolutionary inter-
actions between predators and prey on the behaviour and
distribution of penguins and krill. Here we show how
this same approach can be used to examine the predicted
impact of increasing krill fishing pressure on the foraging
success and spatial distribution of penguins. We con-
sidered how local environmental conditions will affect
the behaviour and growth of krill, and thus penguin
foraging behaviour in the presence of fishing. We focused
on predicting the relationship between fishing pressure
and penguin predicted food intake rates under different
environmental scenarios to assess indirect effects. Fur-
thermore, we show how penguin behaviour can be used
to assess the impact of krill fisheries on both species.

 

Methods

 

We will first briefly describe the basic elements of the
model of krill and penguin behaviour (Alonzo, Switzer
& Mangel 2003). We will then describe the fisheries
model that uses these behavioural patterns.

 

      


 

Krill select a daytime vertical habitat and at night they
either migrate to the surface to feed or remain in their
daytime habitat and do not feed (Mauchline 1980;
Morris 

 

et al

 

. 1983, 1984). Penguins forage for krill either
inshore or offshore depending on the distribution and
abundance of krill (T. Ichii, personal communication).
We assume that the krill and penguin behavioural
‘rules’ have evolved to maximize their long-term
expected reproductive success (Mangel & Clark 1988;
Clark & Mangel 2000; Alonzo 2002; Alonzo, Switzer

& Mangel 2003). We also assume penguins respond to
the local abundance of krill and krill respond to local
environmental conditions (T. Ichii, personal com-
munication; Trivelpiece 

 

et al

 

. 1986; Davis & Darby
1990; Trivelpiece 

 

et al

 

. 1990; Quetin 

 

et al

 

. 1996; Mangel
& Switzer 1998; Charrassin & Bost 2001). The model
searches for the krill and penguin behavioural patterns
at which no individual can increase its expected rep-
roductive success by changing behaviour (Alonzo,
Switzer & Mangel 2003). A krill’s behaviour affects
its growth, survival and vertical distribution (Alonzo &
Mangel 2001; Alonzo, Switzer & Mangel 2003). The
distribution and growth of  krill affects penguin
foraging behaviour (Alonzo, Switzer & Mangel 2003).
Penguin behaviour affects krill mortality (due to
predation) and penguin foraging success (Alonzo &
Mangel 2001; Alonzo, Switzer & Mangel 2003).

 

Spatial and temporal structure of the model

 

We consider three vertical habitats (surface, shallow
and deep) combined with two horizontal regions
(inshore and offshore; Fig. 1). For computational trac-
tability, we assume that the continuous distribution
of habitat range can be roughly classified into the six
resulting categories. We assume also that penguins
can move between inshore and offshore and that krill
only move vertically but do not move between regions.
These initial simplifications could be extended in
future analyses. We assume a starting abundance of
krill inshore and offshore; krill behaviour, survival and
growth then determine the distribution and abundance
of krill in each of the vertical habitats. We consider a 16-
week period during which the penguins are land-based
and reproducing (Trivelpiece, Trivelpiece & Volkman
1984, 1987; Davis & Darby 1990; Ichii, Naganobu
& Ogisima 1996; Croll & Tershy 1998; Mangel &
Switzer 1998). We assume that a penguin’s ability to catch
krill decreases with depth (Trivelpiece 

 

et al

 

. 1986;
Trivelpiece, Trivelpiece & Volkman 1987). Therefore,
krill that select deeper habitats are less accessible to
foraging penguins. However, krill in deeper habitats
must travel further to the surface to feed.

 

Fig. 1. Spatial structure of the model. See text for details.
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Krill growth and behaviour

 

We calculate expected krill growth per week (Alonzo,
Switzer & Mangel 2003). Growth rate depends on the
current size of the krill, water temperature, vertical habitat,
phytoplankton abundance and krill feeding behaviour
(Alonzo & Mangel 2001). Growth is determined by
the difference between metabolic costs and food intake
(Atkinson 1994). Total metabolic costs increase with
individual size (Ikeda 1985). Higher water temperatures
also lead to higher metabolic costs (Ikeda 1985). How-
ever, food intake rates also increase with water temper-
ature and individual size (Holm-Hansen & Huntley
1984; Alonzo & Mangel 2001). Phytoplankton abund-
ance increases krill growth rates (Boyd, Heyraud &
Boyd 1984; Ikeda & Thomas 1987). Krill reach a max-
imum size of 60 mm and we only consider individuals
above 12 mm minimum size (Mauchline 1980; Ikeda,
Dixon & Kirkwood 1985). Travel costs decrease with
krill size and increase with distance (Alonzo & Mangel
2001). As a result, larger krill may grow more if  they
spend the day in deep (and colder) waters while smaller
krill may grow more if  they remain in warmer surface
waters during they day (Alonzo & Mangel 2001).

Krill behaviour has two components. First, krill
select a daytime habitat (surface, shallow or deep). Sec-
ondly, krill either feed at the surface at night or remain
in their present habitat without feeding. Krill growth
thus depends on behaviour. Fitness is measured as
the expected reproductive success at the end of the
16 weeks. This is determined by survival through the
time period (determined by predation risk), size at
the end of the period (determined by growth) and the pro-
bability of surviving to reproduction after the period
under consideration. Thus, krill may trade-off survival
and growth because the probability of  predation at
the surface is higher than in deeper waters. We use the
model to find the krill behaviour that maximizes indi-
vidual expected reproductive success (Alonzo, Switzer
& Mangel 2003). Krill feeding behaviour and habitat
selection depend on individual size and time in the
year. Usually, small krill are predicted to remain at the
surface and larger krill to be found in deeper waters.
However, predation risk affects this pattern, with more
krill predicted to be in deeper waters when predation
risk is higher at the surface (Alonzo & Mangel 2001;
Alonzo, Switzer & Mangel 2003).

 

Penguin foraging behaviour

 

Penguins may forage both inshore and offshore, where
their intake rates depend on competition from other
penguins, the abundance and distribution of  krill,
the metabolic costs associated with foraging in each
region, and their ability to forage at depth. We assume
that penguin intake rates decrease linearly with com-
petition from other penguins and increase linearly with
available krill biomass. Thus, we assume that prey
switching does not occur and that krill are not suffi-

ciently abundant that other factors significantly con-
strain penguin consumption rates. The availability of
krill depends on their vertical distribution and the abil-
ity of penguins to forage at depth. We assume penguins
distribute themselves with respect to their expected
foraging success inshore and offshore in a way that leads
to the maximum expected foraging success given krill
distribution and abundance (Alonzo, Switzer & Mangel
2003). We focus on foraging behaviour during the
reproductive season because it is during this time that
penguin fitness is most clearly linked to krill distribution
and abundance and indirect effects of fisheries (Brodin,
Olsson & Clark 1998). We assume that penguin forag-
ing behaviour is determined by their need to obtain
food for themselves and their offspring. Thus penguin
fitness and predicted behaviour will be directly linked
to food intake. Although this may ignore much of the
biology of penguins in general (Davis & Darby 1990), it
clearly captures the link between krill and penguins
through the food and time available for reproduction.

 

      
  

 

We use the model to predict krill and penguin beha-
viour (habitat selection or foraging) in the absence of
fishing. We then determine the effect of a reduction in
krill abundance due to fishing on the distribution of
both krill and penguins. We assume that penguins
respond to the change in krill distributions and thus
adjust their foraging behaviour (proportion of time
spent inshore or offshore). We also assume that krill
respond to the current environmental conditions and
expected predation risk. This is equivalent to assuming
that over evolutionary time predation has shaped the
vertical habitat selection behaviour of krill but that
they do not change their diel vertical migration beha-
viour immediately in response to penguin behavioural
changes. Fishing is assumed to occur only offshore. We
consider both the case where fishing takes krill of all
sizes and the case where only larger krill (above 35 mm)
are taken. We also examine two patterns of  fishing:
(i) the case where fishing occurs during the penguin rep-
roductive season; and (ii) the case where fishing only
occurs prior to the reproductive season.

We start by assuming that the abundance of krill
prior to fishing is equal inshore and offshore and is
sufficiently high without fishing that penguin predation
only slightly depletes krill. We also assume for simpli-
city that krill are uniformly distributed among size
classes at the beginning of the time period under con-
sideration. However, the distribution has little effect
on the qualitative predictions we report here. We then
allow fishing to reduce the distribution of krill offshore
by a certain percentage of available biomass equally
across all size classes affected by fishing. For the con-
tinuous fishing case, we examine the range from 1% to
10% of the available krill biomass removed per week.
For the case where fishing only occurs prior to penguin
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reproduction, we examine the removal of from 10% to
50% available krill biomass.

For each week under consideration, we first use the
pattern of behaviour predicted by the model without fishing
(see above; Alonzo, Switzer & Mangel 2003) to predict
the distribution and abundance of krill (Fig. 2). Given
this size and spatial distribution of krill, we determine
the predicted reduction in krill abundance due to fishing.
We then calculate the proportion of penguins that are
predicted to be found offshore (as described above) and
determine their expected foraging success. We measure
relative penguin success as the percentage of food they
would have obtained in the absence of fishing. Penguin
predation then reduces the abundance of krill both
inshore and offshore. This reduced size and spatial
distribution of krill is used to predict krill behaviour
and size and spatial distributions in the next time period.
We repeat these calculations throughout the entire
16-week period under consideration (Fig. 2).

In Alonzo, Switzer & Mangel (2003), we examined
the model and specific parameters in great detail. In
this analysis we focus on the impact of fishing pressure
and environmental conditions on penguin foraging
success. For more information on the effect of other
aspects of the model on krill and penguin behaviour see
Alonzo, Switzer & Mangel (2003). We examine the
impact of decreasing phytoplankton from 100% to
50% of the maximum growth conditions and consider
the effect of varying water temperature with depth
within the range from 

 

−

 

2 to 2 

 

°

 

C in 1-

 

°

 

C increments
assuming that water temperature decreases with depth
(T

 

surface

 

 

 

≤

 

 T

 

shallow

 

 

 

≤

 

 T

 

deep

 

).

 

Results

 

Basic patterns without fishing

 

The results of the model without fishing are described
in detail elsewhere (Alonzo, Switzer & Mangel 2003).
In the absence of fishing, krill are predicted to be found
feeding at the surface at night both inshore and off-
shore (Fig. 3). During the day most krill are predicted
to be in shallow water inshore and deep water offshore

Fig. 3. Predicted spatial and temporal distribution of krill without fishing. The proportions of krill in surface (dotted lines),
shallow (dashed lines) and deep water (solid lines) are shown. The absence of one of these lines indicates that krill are not predicted
to be found in this habitat.

Fig. 2. Structure of the fishing model. See text for details.
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(to decrease the risk of predation by penguins; Fig. 3).
However, small krill are expected to remain at the surface
during the day in both regions (Fig. 3). When krill are
equally abundant inshore and offshore, slightly more
penguins are predicted to be found inshore (Fig. 4).
This occurs both because foraging offshore increases the
cost of foraging (and thus decreases energy intake) and
because krill are more accessible inshore in shallower
water. The proportion of penguins inshore is predicted
to decrease slightly through time as some krill are depleted
inshore (Fig. 4). However, the depletion of krill by pen-
guins in the absence of fishing is predicted to be very

weak. Penguin feeding rates are predicted to remain high
both inshore and offshore in the absence of fishing.

 

   

 

The relative vertical distribution of krill is not predicted
to change in the presence of fishing. Abundance, how-
ever, is predicted to decrease in all vertical habitats
offshore, and depletion of krill by penguins both inshore
and offshore is predicted to be stronger in the presence
of  fishing. As a result of  these underlying patterns,
penguin food intake is predicted to decrease (Fig. 5) and

Fig. 4. The spatial and temporal distribution of penguins without fishing. The dotted line represents the pattern during the day
and the solid lines patterns at night.

Fig. 5. Relative decrease in weekly penguin food intake with fishing for when (a) fishing occurs throughout or (b) fishing occurs
only before the reproductive period. Solid lines represent the case where all size classes are fished and the dotted line gives the
predictions for the case where only krill above 35 mm length are fished.
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the proportion of penguins found inshore is predicted
to decrease (Fig. 6) as fishing pressure increases because
fishing only reduces krill biomass offshore.

As fishing pressure increases and krill abundance
offshore declines, penguin food intake is predicted to
decrease as well (Fig. 5). Although behavioural plastic-
ity could easily cause non-linearities, the predicted
decline in intake rates is roughly linear. Furthermore,
the proportion of penguins predicted to be found

inshore increases as depletion (due to fishing) increases
(Fig. 6). Although the reduction in penguin consump-
tion rate with increased fishing pressure is roughly
linear (Fig. 5), the rate at which intake rates decline is
greater than expected by biomass removed alone and
depends on environmental conditions (Figs 7 and 8).

Whether fishing occurs prior to or during the breed-
ing season has little effect on the predicted pattern of
penguin foraging success or distribution (Figs 5 and 6).

Fig. 6. Relative decrease in the proportion of penguins offshore with fishing. Results are shown for when (a) fishing occurs
throughout or (b) only occurs before the reproductive season on all krill of all sizes.

Fig. 7. Effects of phytoplankton abundance on penguin foraging success. Predicted weekly relative food intake rates of penguins
are given for maximum phytoplankton abundance (solid line) and when phytoplankton is decreased by 50% (dotted line). Results
shown are for the case where all krill size classes are fished and fishing occurs prior to the reproductive season. Although a 50%
reduction on krill biomass offshore represents a 25% reduction in total krill biomass at the highest fishing pressure, the reduction
in penguin consumption rate is approximately 30% in both cases.
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Fishing during the reproductive period does amplify
the effects of depletion as well as cause a decrease in
food intake rates through time and a corresponding
decrease in the proportion of penguins found inshore
through the reproductive period. However, whether
fishing occurs during or prior to penguin reproduction
is predicted to have little effect on penguin intake rates.
Whether krill of all sizes or only larger krill are taken by
fishing also has little effect on the predicted penguin
food intake rates, because large krill contribute more
biomass per individual krill. However, this assumes
that penguin intake rates are affected by the amount of
krill biomass available rather than by krill size.

Environmental conditions that affect krill behaviour
and growth are predicted to affect penguin food intake
rates (Figs 7 and 8). As phytoplankton abundance
decreases, penguin intake rates are predicted to decrease
as well, and relatively more penguins are predicted to
be found inshore. Similarly, when water temperature
decreases krill growth, krill available biomass decreases
and the predicted depletion of  krill by penguins
increases. As a result, penguin intake rates are predicted
to decrease more for the same level of fishing pressure
(Fig. 8) and more penguins are predicted to be found
inshore than in better krill growth conditions.

 

Discussion

 

Reducing the abundance of  krill near penguins that
are land-based for reproduction is predicted to reduce
penguin food intake rates. Given the documented
links between krill abundance and penguin survival
and reproduction, this also leads to a prediction of
decreased adult survival and reproduction. However,
krill behaviour is predicted to cause stronger effects of
krill fisheries than explained solely by the percentage of
biomass removed. This prediction is mainly caused
by krill in deeper waters being less accessible to diving

penguins. Furthermore, krill growth during the period
under consideration is also important. For example,
when fishing only occurred prior to the time period
under consideration, a 50% reduction in biomass off-
shore is consistent with a 25% reduction of biomass
both inshore and offshore. Thus, we would expect from
biomass alone that penguin feeding rates would drop
by 25% or less because of the decreased cost of foraging
inshore. However, our model predicts a 30% drop in
penguin food intake per week under good growth con-
ditions for krill. The effect of krill fisheries on penguins
is predicted to be even greater under conditions (low
water temperature or reduced phytoplankton abund-
ance) that decrease krill growth and increase the
proportion of krill predicted to be found in deep water
(and thus be less accessible to penguins). Thus, krill
behaviour can have important effects on the impact of
krill fisheries on penguin survival and reproduction.

We predict that the proportion of penguins found
offshore will decrease as krill fisheries offshore
increase. The exact number of penguins found inshore
and offshore will depend on a variety of factors includ-
ing the abundance of krill both inshore and offshore,
the size distribution of krill, the cost of travelling off-
shore to forage, the total number of penguins foraging,
and local environmental conditions. However, the
relative change in the proportion of penguins found
offshore (e.g. Fig. 6) is relatively unaffected by fishing
patterns, environmental conditions, penguin foraging
ability at depth or initial krill abundance. As a result,
it may be possible to use changes in the behaviour of
penguins to determine relative effects of the fisheries on
penguin foraging success. However, before using pen-
guin foraging behaviour as an indicator of  the effect
of fisheries on penguins, we must first understand what
normal penguin foraging patterns look like in the
absence of fishing. Although this will require some
effort, it may be easier to accomplish than good estimates

Fig. 8. Effects of water temperature on penguin foraging success. Predicted weekly relative food intake rates of penguins are given
for three temperature regimes: Tsurface = 2, Tshallow = 0, Tdeep = −2 (thick line); Tsurface = 0, Tshallow = 0, Tdeep = 0 (thin line); Tsurface =
−2, Tshallow = −2,  Tdeep = −2 (dotted line). Results shown are for the case where all krill size classes are fished and fishing occurs prior
to the reproductive season. Although a 50% reduction on krill biomass offshore represents a 25% reduction in total krill biomass
at the highest fishing pressure, the reduction in penguin consumption rate is approximately 30% in all three cases.
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of  krill spatial distribution patterns. It is also true
that although the relative effect may be the same in dif-
ferent years, the absolute effect of fishing on penguins
will be higher in years of low krill abundance and growth
or years in which krill are found mainly in deeper waters.

In our model, we have assumed that only krill bio-
mass and distribution affect penguin food intake rates.
As a result, the fishing pattern and size distribution of
krill were not predicted to have strong effects on
penguin food intake. However, in some circumstances
penguins have been found to feed more on larger krill
(Reid 

 

et al

 

. 1996). This may indicate that penguins
forage more efficiently or preferentially on larger krill. If
this is true and krill fisheries take larger krill or if  krill
growth rates decrease, our model would underestimate
the impact of the krill fisheries on penguin foraging
success. We have also assumed that penguins forage to
maximize their intake rates. Although patterns of
penguin foraging behaviour are more consistent with
rate-maximizing than survival-maximizing behaviour of
penguins (Alonzo, Switzer & Mangel 2003), penguin
behaviour may be influenced by other factors such as
reproductive demands and survival. None the less, we
would still expect penguin food intake rates to decrease
as krill fisheries increase. However, our ability to man-
age the krill fisheries and their impact on penguins
would be greatly increased by further studies of pen-
guin foraging patterns and success.

Our results demonstrate that an understanding of
the behaviour of organisms and the effect of behaviour
on interactions between species can increase our ability
to explain and predict the impact of human-induced
disturbances such as fishing on the entire community
(see also Gill, Norris & Sutherland 2001). For example,
we predict that knowing the amount of prey biomass
removed will not be sufficient to predict the reduction
in a penguin’s consumption rate. Instead, understand-
ing how individual behaviour within a species affects
interactions between species is necessary to make
reliable predictions. Our method can be used to develop
ecosystem approaches to management, where we
utilize what is known about a particular system and
interactions between species in general to predict how
specific species will respond to novel situations. There
has also been interest in using top predators as ecosys-
tem monitors. In theory, the survival and reproduction
of top predators will be indicative of the ecosystem as a
whole. However, most top predators are long-lived,
large-bodied organisms compared with their prey. As
a result, the population dynamics of these species may
be too slow to respond to changes in the abundance of
their prey to be used as ecosystem monitors. We suggest
instead that the predator behaviour may represent a
better monitor of ecosystem changes.
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