23 research outputs found

    An entry-competent intermediate state of the HIV-1 envelope glycoproteins

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) mediate viral entry and are the sole target of neutralizing antibodies. Recent studies show that the metastable HIV-1 Env trimer can transit among three conformational states: State 1, State 3, and State 2, corresponding to the “closed”, “open” and intermediate conformations, respectively. During virus entry, binding to the CD4 receptor drives Env from state 1 to state 3. In the unliganded Env, transitions from the closed (State 1) conformation are restrained by intramolecular interactions among different Env residues, which regulate HIV-1 Env conformation. Releasing the specific restraints on State 1 Env leads to increased occupancy of State 2, which is a functional conformation on the entry pathway and an obligate intermediate between State 1 and State 3. Frequent sampling of intermediate State 2 allows HIV-1 to infect cells expressing low levels of CD4, and leads to resistance to several broadly neutralizing antibodies as well as small-molecule inhibitors. Recent findings provide new mechanistic insights into the function and inhibition of HIV-1 Env and will contribute to the development of new therapeutic and prophylactic interventions to combat HIV-1

    An Inducible Cell-Cell Fusion System with Integrated Ability to Measure the Efficiency and Specificity of HIV-1 Entry Inhibitors

    Get PDF
    HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors

    Reverse transcriptases can clamp together nucleic acids strands with two complementary bases at their 3′-termini for initiating DNA synthesis

    Get PDF
    We present evidence that the reverse transcriptase (RT) of human immunodeficiency virus type-1 stabilizes in vitro very short (2-nt) duplexes of 3′-overhangs of the primer strand that are annealed to complementary dinucleotides tails of DNA or RNA template strands, provided that these sequences contain at least one C or G. This RT-induced strand ‘clamping’ activity promotes RT-directed DNA synthesis. This function is achieved only when the functional template strand is adjacent to a second DNA or RNA segment, annealed upstream to most of the primer (without gaps). The combined clamp/polymerase activity is typical to RTs, as it was found in different RTs from diverse retroviral groups, whereas cellular DNA-polymerases (devoid of 3′→5′ exonucleolytic activity) showed no clamp activity. The clamp-associated DNA-binding activity is markedly stabilized by dGTP, even when dGTP is not incorporated into the nascent DNA strand. The hereby-described function can help RTs in bridging over nicks in the copied RNA or DNA templates, encountered during reverse transcription. Moreover, the template-independent blunt-end synthesis of RTs can allow strand transfers onto compatible acceptor strands while synthesizing DNA. These RT properties can shed light on potentially-new roles of RTs in the reverse-transcription process and define new targets for anti-retroviral drugs

    Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140

    An entry-competent intermediate state of the HIV-1 envelope glycoproteins

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) mediate viral entry and are the sole target of neutralizing antibodies. Recent studies show that the metastable HIV-1 Env trimer can transit among three conformational states: State 1, State 3, and State 2, corresponding to the “closed”, “open” and intermediate conformations, respectively. During virus entry, binding to the CD4 receptor drives Env from state 1 to state 3. In the unliganded Env, transitions from the closed (State 1) conformation are restrained by intramolecular interactions among different Env residues, which regulate HIV-1 Env conformation. Releasing the specific restraints on State 1 Env leads to increased occupancy of State 2, which is a functional conformation on the entry pathway and an obligate intermediate between State 1 and State 3. Frequent sampling of intermediate State 2 allows HIV-1 to infect cells expressing low levels of CD4, and leads to resistance to several broadly neutralizing antibodies as well as small-molecule inhibitors. Recent findings provide new mechanistic insights into the function and inhibition of HIV-1 Env and will contribute to the development of new therapeutic and prophylactic interventions to combat HIV-1

    Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer

    Get PDF
    The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer, a membrane-fusing machine, mediates virus entry into host cells and is the sole virusspecific target for neutralizing antibodies. Binding the receptors, CD4 and CCR5/CXCR4, triggers Env conformational changes from the metastable unliganded state to the fusion-active state. We used cryo-electron microscopy to obtain a 6-Å structure of the membranebound, heavily glycosylated HIV-1 Env trimer in its uncleaved and unliganded state. The spatial organization of secondary structure elements reveals that the unliganded conformations of both gp120 and gp41 subunits differ from those induced by receptor binding. The gp120 trimer association domains, which contribute to interprotomer contacts in the unliganded Env trimer, undergo rearrangement upon CD4 binding. In the unliganded Env, intersubunit interactions maintain the gp41 ectodomain helical bundles in a “spring-loaded” conformation distinct from the extended helical coils of the fusion-active state. Quaternary structure regulates the virus-neutralizing potency of antibodies targeting the conserved CD4-binding site on gp120. Recent studies that help validate the 3-D reconstruction of the unliganded HIV-1 Env precursor map will be presented. The Env trimer architecture provides mechanistic insights into the metastability of the unliganded state, receptor-induced conformational changes, and quaternary structure-based strategies for immune evasion

    Lineage-Specific Differences between Human and Simian Immunodeficiency Virus Regulation of gp120 Trimer Association and CD4 Binding

    Get PDF
    Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding

    SERINC5 Restricts HIV-1 Infectivity by Promoting Conformational Changes and Accelerating Functional Inactivation of Env

    No full text
    SERINC5 incorporates into HIV-1 particles and inhibits the ability of Env glycoprotein to mediate virus-cell fusion. SERINC5-resistance maps to Env, with primary isolates generally showing greater resistance than laboratory-adapted strains. Here, we examined a relationship between the inhibition of HIV-1 infectivity and the rate of Env inactivation using a panel of SERINC5-resistant and -sensitive HIV-1 Envs. SERINC5 incorporation into pseudoviruses resulted in a faster inactivation of sensitive compared to resistant Env strains. A correlation between fold reduction in infectivity and the rate of inactivation was also observed for multiple Env mutants known to stabilize and destabilize the closed Env structure. Unexpectedly, most mutations disfavoring the closed Env conformation rendered HIV-1 less sensitive to SERINC5. In contrast, functional inactivation of SERINC5-containing viruses was significantly accelerated in the presence of a CD4-mimetic compound, suggesting that CD4 binding sensitizes Env to SERINC5. Using a small molecule inhibitor that selectively targets the closed Env structure, we found that, surprisingly, SERINC5 increases the potency of this compound against a laboratory-adapted Env which prefers a partially open conformation, indicating that SERINC5 may stabilize the closed trimeric Env structure. Our results reveal a complex effect of SERINC5 on Env conformational dynamics that promotes Env inactivation and is likely responsible for the observed restriction phenotype
    corecore