6 research outputs found

    Automated Fault Detection in the Arabian Basin

    Full text link
    In recent years, there has been a rapid development of the computer-aided interpretation of seismic data to reduce the otherwise intensive manual labor. A variety of seed detection algorithms for horizon and fault identification are integrated into popular seismic software packages. Recently, there has been an increasing focus on using neural networks for fully automatic faults detection without manually seeding each fault. These networks are usually trained with synthetic fault data sets. These data sets can be used across multiple seismic data sets; however, they are not as accurate as real seismic data, particularly in structurally complex regions associated with several generations of faults. The approach taken here is to combine the accuracy of manual fault identification in certain parts of the data set with a convolutional neural network that can then sweep through the entire data set to identify faults. We have implemented our method using 3D seismic data acquired from the Arabian Basin in Saudi Arabia covering an area of 1051 km2. The network is trained, validated, and tested with samples that included a seismic cube and fault images that are labeled manually corresponding to the seismic cube. The model successfully identified faults with an accuracy of 96% and an error rate of 0.12 on the training data set. To achieve a robust model, we further enhanced the prediction results using postprocessing by linking discontinued segments of the same fault line, thus reducing the number of detected faults. The postprocessing improved the prediction results from the test data set by 77.5%. In addition, we introduced an efficient framework to correlate the predictions and the ground truth by measuring their average distance value. Furthermore, tests using this approach also were conducted on the F3 Netherlands survey with complex fault geometries and find promising results. As a result, fault detection and diagnosis were achieved efficiently with structures similar to the trained data set

    Additional file 5 of Spatio-temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia

    No full text
    Additional file 5. Spatio-temporal probability isocontour maps obtained by multiplying the values of the spatial analysis of last 300 ka eruptions by their long-term average recurrence rate, 1.1 eruptions/10 kyr. (a, b, and c) Maps show the probabilities of occurrence of at least one eruption in Harrat Khaybar for the next 1, 10, and 1000 years, respectively

    Additional file 1 of Spatio-temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia

    No full text
    Additional file 1. Excel file containing separate sheets for each dataset analyzed in this study. It includes spatial and temporal datasets for Harrat Khaybar such as vent and fissure locations, bandwidth matrices, age data, recurrence rates, and spatio-temporal cumulative probabilities

    Additional file 2 of Spatio-temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia

    No full text
    Additional file 2. Analytical data for each of the 15 age determinations of Harrat Khaybar rock that was used in this study

    Additional file 4 of Spatio-temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia

    No full text
    Additional file 4. Reduced-to-pole aeromagnetic maps of Harrat Khaybar. It shows the inconsistency between the visible volcanic vent locations and magnetic anomalies. a) Raw aeromagnetic data. b) Aeromagnetic data clipped to the extent of Harrat Khaybar lavas. c) Stratigraphic unit boundaries of Harrat Khaybar plotted over the aeromagnetic data, corresponding to the boundaries in Fig. 2a. d) Surface vent locations plotted over the aeromagnetic data. The scale in a) represents magnetic intensity

    Additional file 3 of Spatio-temporal forecasting of future volcanism at Harrat Khaybar, Saudi Arabia

    No full text
    Additional file 3. Spatial probability isocontour maps of age group 1, 2, 3 and 5. (a, b, c, and d) Maps depict the distribution of probabilities throughout the harrat based on the locations of visible vents in age group 1, 2, 3 and 5, respectively, without using age-weighting procedure
    corecore