29 research outputs found

    Detection of Non-PCR Amplified S. enteritidis Genomic DNA from Food Matrices Using a Gold-Nanoparticle DNA Biosensor: A Proof-of-Concept Study

    Get PDF
    Bacterial pathogens pose an increasing food safety and bioterrorism concern. Current DNA detection methods utilizing sensitive nanotechnology and biosensors have shown excellent detection, but require expensive and time-consuming polymerase chain reaction (PCR) to amplify DNA targets; thus, a faster, more economical method is still essential. In this proof-of-concept study, we investigated the ability of a gold nanoparticle-DNA (AuNP-DNA) biosensor to detect non-PCR amplified genomic Salmonella enterica serovar Enteritidis (S. enteritidis) DNA, from pure or mixed bacterial culture and spiked liquid matrices. Non-PCR amplified DNA was hybridized into sandwich-like structures (magnetic nanoparticles/DNA/AuNPs) and analyzed through detection of gold voltammetric peaks using differential pulse voltammetry. Our preliminary data indicate that non-PCR amplified genomic DNA can be detected at a concentration as low as 100 ng/mL from bacterial cultures and spiked liquid matrices, similar to reported PCR amplified detection levels. These findings also suggest that AuNP-DNA biosensors are a first step towards a viable detection method of bacterial pathogens, in particular, for resource-limited settings, such as field-based or economically limited conditions. Future efforts will focus on further optimization of the DNA extraction method and AuNPbiosensors, to increase sensitivity at lower DNA target concentrations from food matrices comparable to PCR amplified DNA detection strategies

    Tween 80 Improves the Acid-Fast Bacilli Quantification in the Magnetic Nanoparticle-Based Colorimetric Biosensing Assay (NCBA)

    Get PDF
    Despite its reduced sensitivity, sputum smear microscopy (SSM) remains the main diagnostic test for detecting tuberculosis in many parts of the world. A new diagnostic technique, the magnetic nanoparticle-based colorimetric biosensing assay (NCBA) was optimized by evaluating different concentrations of glycan-functionalized magnetic nanoparticles (GMNP) and Tween 80 to improve the acid-fast bacilli (AFB) count. Comparative analysis was performed on 225 sputum smears: 30 with SSM, 107 with NCBA at different GMNP concentrations, and 88 with NCBA-Tween 80 at various concentrations and incubation times. AFB quantification was performed by adding the total number of AFB in all fields per smear and classified according to standard guidelines (scanty, 1+, 2+ and 3+). Smears by NCBA with low GMNP concentrations (≤1.5 mg/mL) showed higher AFB quantification compared to SSM. Cell enrichment of sputum samples by combining NCBA-GMNP, incubated with Tween 80 (5%) for three minutes, improved capture efficiency and increased AFB detection up to 445% over SSM. NCBA with Tween 80 offers the opportunity to improve TB diagnostics, mainly in paucibacillary cases. As this method provides biosafety with a simple and inexpensive methodology that obtains results in a short time, it might be considered as a point-of-care TB diagnostic method in regions where resources are limited

    Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices

    No full text
    Abstract Background Nuclear magnetic resonance (NMR) technique is a powerful analytical tool in determining the presence of bacterial contaminants in complex biological samples. In this paper, a portable NMR-based (pNMR) biosensor and assay to detect the foodborne bacteria Escherichia coli O157:H7 is reported. It uses antibody-functionalized polymer-coated magnetic nanoparticles as proximity biomarker of the bacteria which accelerates NMR resonance signal decay. Results The pNMR biosensor operates at 0.47 Tesla of magnetic strength and consists of a high-power pulsed RF transmitter and an ultra-low noise sensing circuitry capable of detecting weak NMR signal at 0.1 μV. The pNMR biosensor assay and sensing mechanism is used in detecting E. coli O157:H7 bacteria in drinking water and milk samples. Experimental results demonstrate that by adding a filtration step in the assay, the pNMR biosensor is able to detect E. coli O157:H7 as low as 76 CFU/mL in water samples and as low as 92 CFU/mL in milk samples in about one min. Conclusion The pNMR biosensor assay and sensing system is innovative for foodborne bacterial detection in food matrices. The lowest detection level for E. coli O157:H7 in water and milk samples is essentially 101 CFU/mL. Although the linear range of detection is only from 101 to 104 CFU/mL, the wider detection range spans from 101 CFU/mL to 107 CFU/mL. Existing pNMR biosensors have detection limits at 103-104 CFU/mL only. The detection technique can be extended to other microbial or viral organisms by merely changing the specificity of the antibodies. Besides food safety, the pNMR biosensor described in this paper has potential to be applied as a rapid detection device in biodefense and healthcare diagnostic applications

    Development of a Molecularly Imprinted Biomimetic Electrode

    No full text
    The technique of molecular imprinting produces artificial receptor sites in apolymer that can be used in a biomimetic sensor. This research extends previous studies ofa molecularly imprinted polymer (MIP) biomimetic sensor for the small drug theophylline.The presence of theophylline in the biomimetic sensor was monitored by analyzing thepeak currents from cyclic voltammetry experiments. The functional working range of theMIP modified electrode was 2 - 4 mM theophylline. The concentration of theophyllinethat resulted in the best signal was 3 mM. The MIP sensor showed no response to thestructurally related molecule caffeine, and therefore was selective to the target analytetheophylline. This research will provide the foundation for future studies that will result indurable biomimetic sensors that can offer a viable alternative to current sensors

    Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    No full text
    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens
    corecore