6 research outputs found

    Associative effects of activated carbon biochar and arbuscular mycorrhizal fungi on wheat for reducing nickel food chain bioavailability

    Get PDF
    Heavy metal stress and less nutrient availability are some of the major concerns in agriculture. Both abiotic stresses have potential to decrease the crops productivity. On the other hand, organic fertilizers i.e., activated carbon biochar (ACB) and arbuscular mycorrhizal fungi (AMF) increase nutritional and heavy metal like Nickel (Ni) stress tolerance and provide immunity to plants for their survival in unfavorable environments. Previous studies have only looked at single applications of either ACB or AMF thus far. There is limited evidence of their synergistic effects, especially in plants growing in soil contaminated with nickel (Ni). To cover the knowledge gap of combined use of AMF inoculation (Glomus intraradices) and/or wheat straw biochar amendments on wheat growth, antioxidant activities and osmolytes concentration, present study is conducted. The use of either the AMF inoculant or the ACB alone resulted in improved wheat growth and decreased Ni uptake. Furthermore, sole AMF or ACB also reduced Ni stress effectively, allowing wheat to grow faster and reducing soil Ni transfer into plant tissue. In comparison to a control, adding ACB with AMF inoculant considerably increased fungal populations. The most significant increase in wheat growth and decrease in tissue Ni contents came from amending soil with AMF inoculant and biochar. Inducing soil alkalinization and causing Ni immobilization, as well as decreasing Ni phyto-availability, the combination treatment had a synergistic impact. These findings imply that AMF inoculation in ACB treatment could be used not only for wheat production but also for Ni-contaminated soil phyto-stabilization. (C) 2022 The Author(s). Published by Elsevier B.V.Peer reviewe

    Integral effects of brassinosteroids and timber waste biochar enhances the drought tolerance capacity of wheat plant

    Get PDF
    Drought stress is among the major threats that affect negatively crop productivity in arid and semi-arid regions. Probably, application of some additives such as biochar and/or brassinosteroids could mitigate this stress; however, the mechanism beyond the interaction of these two applications is not well inspected. Accordingly, a greenhouse experiment was conducted on wheat (a strategic crop) grown under deficit irrigation levels (factor A) i.e., 35% of the water holding capacity (WHC) versus 75% of WHC for 35 days while considering the following additives, i.e., (1) biochar [BC, factor B, 0, 2%] and (2) the foliar application of 24-epibrassinolide [BR, factor C, 0 (control treatment, C), 1 (BR1) or 3 (BR2) mu mol)]. All treatments were replicated trice and the obtained results were statistically analyzed via the analyses of variance. Also, heat-map conceits between measured variables were calculated using the Python software. Key results indicate that drought stress led to significant reductions in all studied vegetative growth parameters (root and shoot biomasses) and photosynthetic pigments (chlorophyll a, b and total contents) while raised the levels of oxidative stress indicators. However, with the application of BC and/or BR, significance increases occurred in the growth attributes of wheat plants, its photosynthetic pigments, especially the combined additions. They also upraised the levels of enzymatic and non-enzymatic antioxidants while decreased stress indicators. Furthermore, they increased calcium (Ca), phosphorus (P) and potassium (K) content within plants. It can therefore be deduced that the integral application of BR and BC is essential to mitigate drought stress in plants.Peer reviewe

    Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars

    Get PDF
    Salinity stress is one of the potential threats that adversely affect the productivity of many cereal crops worldwide. Spraying plants with nano-Zn particles may lessen effectively such negative impacts on plants; yet its mode of action is still not well explored. This study was performed to evaluate the effects of spraying nano-Zn particles with varying concentrations (0, 20, 50 and 80 mg L-1) on two wheat cultivars irrigated with saline water (EC = 6.3 dS m-1) versus a non-saline one. The key results revealed that root and shoot weights decreased significantly under salinity stress conditions, while improved considerably with nano-Zn-particles foliar application up to 50 mg nanoZn L-1; thereafter significant reductions occurred. Also, shoot and root lengths as well as plant leaf area index improved considerably owing to this foliar application. Clearly, roots and shoots weights of wheat plants sprayed with nano-Zn particles under salinity stress conditions exhibited higher values than the corresponding ones that was grown under non-saline conditions without nano-Zn-particles applications. Unexpectedly, this foliar spray led to significant reductions in plant pigments and also in enzymatic and non-enzymatic antioxidants in plants. Yet, this foliar spray enhanced formation of total soluble sugars and proline, and raised significantly Ca contents in wheat roots and shoots, and to some extent K contents. In conclusion, the foliar application of nano-Zn particles increased plant growth under salty stress conditions via two parallel processes, i.e., stimulating formation of osmolytes and stimulating nutrient uptake which may, in turn, increase plant metabolism. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CCPeer reviewe

    Battling Food Losses and Waste in Saudi Arabia: Mobilizing Regional Efforts and Blending Indigenous Knowledge to Address Global Food Security Challenges

    No full text
    Food Loss and Waste (FLW) that entail substantial economic, environmental, and social cost is of great concern for a country fulfilling > 80% of food demands through the import of agricultural commodities. The current study mainly aimed at bringing together a wide range of perspectives on FLW by multi-stakeholder engagement in order to enhance cooperation and network building with respect to sharing knowledge and experiences on FLW prevention activities along the entire food supply chain for a country located at the geographic frontier facing stubborn challenges of desertification, water scarcity, and harsh climatic conditions. These challenges are not only being addressed at the national level but have also been made the focus of multilateral activities in 2020 as part of the Saudi G20 Presidency. The Ministry of Environment, Water and Agriculture under the umbrella of the G20 Meeting of Agricultural Chief Scientists (MACS) hosted a regional workshop on FLW in collaboration with the Thünen Institute, Germany, to raise awareness among Gulf Cooperation Council (GCC) countries. The present paper provides insights into the current status of FLW by revealing that, overall, 33.1% of the total available food in the Kingdom is lost and wasted during the entire food supply chain. Overall, the GCC countries witnessed higher percentages of food waste compared with food losses. Environmental conditions prevailing in the region necessitate the development of adequate and appropriate cold chain storage facilities for balanced distribution through cold storage transportation facilities along the food supply chain to minimize food losses. However, campaigns and activities to raise awareness with a view of changing attitudes towards reducing FLW by the adoption of good practices, promoting the concept of circular economy practices, and the establishment of food banks for surplus food redistribution are important to mitigate FLW in the Kingdom

    Risk Assessment of Pesticide Residues by GC-MSMS and UPLC-MSMS in Edible Vegetables

    No full text
    In recent years, there has been a significant increase related to pesticide residues in foods, which may increase the risks to the consumer of these foods with the different quality and concentrations of pesticide residues. Pesticides are used for controlling pests that reduce yields. On the other hand, it has become a major public health concern due to its toxic properties. Thus, the objective of the current study employed the application of Quick Easy Cheap Effective Rugged Safe (QuEChERS) method, in combination with gas and liquid chromatography-tandem mass spectrometric detection (GCMSMS, LCMSMS) in order to determine 137 pesticide residues (63 insecticides, 41 acaricides, 40 herbicide, 55 fungicide, nematicide, growth regulator, Chitin synthesis inhibitors, and Juvenile hormone mimics), in 801 vegetables such as 139 tomatoes, 185 peppers, 217 squash, 94 eggplants, and 166 cucumbers from different locations in Hail and Riyadh cities. The results showed that the majority of pesticide residues were detected for each of the following pesticides: acetaimpride, metalaxyl, imidaclopride, bifenthrin, pyridaben, difenoconazole, and azoxystrobien, which were repeated in the samples studied 39, 21, 11, 10, 8, 7, and 5, respectively. In addition, results observed that the tomato was the most contaminated with pesticide residues; it was contaminated with 19 compounds and was followed by pepper, cucumber, and squash, and the last commodity in the contaminated ranking was eggplant. The highest calculated estimated daily intakes (EDIs) were recorded for tomatoes which were estimated between 0.013 to 0.516 mg/kg of body weight per day (bw/day) while the lowest EDIs value was between 0.000002 to 0.0005 mg/kg of bw/day for cucumber. Results indicated that the EDIs values were lower than the acceptable daily intake (ADI) values. Results observed that the most of pesticide residues exposure in food consumption in Saudi Arabia were lower than ADIs. In addition, the highest value for health risk index (HRI) was recorded with Ethion residue in tomato, but in sweet pepper, the highest value for HRI was 127.5 in the form of fipronil residue. On the other hand, results found that the highest values of HRI were 1.54, 1.61, and 0.047 for difenoconazole, bifenthrin, and pyridaben residues in squash, eggplant, and cucumber

    Risk Assessment of Pesticide Residues by GC-MSMS and UPLC-MSMS in Edible Vegetables

    No full text
    In recent years, there has been a significant increase related to pesticide residues in foods, which may increase the risks to the consumer of these foods with the different quality and concentrations of pesticide residues. Pesticides are used for controlling pests that reduce yields. On the other hand, it has become a major public health concern due to its toxic properties. Thus, the objective of the current study employed the application of Quick Easy Cheap Effective Rugged Safe (QuEChERS) method, in combination with gas and liquid chromatography-tandem mass spectrometric detection (GCMSMS, LCMSMS) in order to determine 137 pesticide residues (63 insecticides, 41 acaricides, 40 herbicide, 55 fungicide, nematicide, growth regulator, Chitin synthesis inhibitors, and Juvenile hormone mimics), in 801 vegetables such as 139 tomatoes, 185 peppers, 217 squash, 94 eggplants, and 166 cucumbers from different locations in Hail and Riyadh cities. The results showed that the majority of pesticide residues were detected for each of the following pesticides: acetaimpride, metalaxyl, imidaclopride, bifenthrin, pyridaben, difenoconazole, and azoxystrobien, which were repeated in the samples studied 39, 21, 11, 10, 8, 7, and 5, respectively. In addition, results observed that the tomato was the most contaminated with pesticide residues; it was contaminated with 19 compounds and was followed by pepper, cucumber, and squash, and the last commodity in the contaminated ranking was eggplant. The highest calculated estimated daily intakes (EDIs) were recorded for tomatoes which were estimated between 0.013 to 0.516 mg/kg of body weight per day (bw/day) while the lowest EDIs value was between 0.000002 to 0.0005 mg/kg of bw/day for cucumber. Results indicated that the EDIs values were lower than the acceptable daily intake (ADI) values. Results observed that the most of pesticide residues exposure in food consumption in Saudi Arabia were lower than ADIs. In addition, the highest value for health risk index (HRI) was recorded with Ethion residue in tomato, but in sweet pepper, the highest value for HRI was 127.5 in the form of fipronil residue. On the other hand, results found that the highest values of HRI were 1.54, 1.61, and 0.047 for difenoconazole, bifenthrin, and pyridaben residues in squash, eggplant, and cucumber
    corecore