123 research outputs found

    Scanning protocol optimisation for dual-energy computed tomography angiography in peripheral artery stenting

    Get PDF
    In this thesis, a novel approach has been proposed to evaluate the optimal scanning protocol for dual energy computed tomography angiography in peripheral arterial stents. This new approach includes evaluation of different protocols and image reconstructions at different energy level, development of the optimal protocol based on lowest radiation dose and acceptable image quality. Furthermore, an optimal contrast medium protocol has been identified in imaging peripheral arterial disease

    Exergetic, exergoeconomic and exergoenvironmental analysis of intercooled gas turbine engine

    Get PDF
    Exergetic and exergoeconomic and exergoenvironmental analyses have been performed for an advanced aero-derivative intercooled gas turbine engine. The proposed system was modelled using the IPSEpro software package and validated using manufacturer’s published data. The exergoeconomic model evaluates the cost-effectiveness of the gas turbine engine based on the Specific Exergy Costing [SPECO] method. The CO2 emissions per KWh were estimated using a generic combustor model, HEPHAESTUS, developed at Cranfield University. It is well known that the exergetic analysis can determine the magnitudes, locations and types of losses within an energy system. The effect of load and ambient temperature variations on gas turbine performance were investigated for two different configurations. The first system, Case-I, was a simple gas turbine (SCGT) engine, and the second, Case-II, an intercooling gas turbine (ICGT) system. The latter enhances gas turbine efficiency but, at the same time, has an adverse effect on the combustion chamber due to reduced compressed air temperature. It was confirmed that full load and low ambient temperature are preferable due to the low waste exergy. The unit exergy cost rate for both SCGT and ICGT have been calculated as 8.59 and 8.32 US$/GJ respectively. The exergoenvironmental results show the ICGT achieved lower emission levels and is more environmentally friendly than the SCGT

    Energetic and exergetic analysis of combined cycle power plant: Part-1 operation and performance

    Get PDF
    Energetic and exergetic analyses are conducted using operating data for Sabiya, a combined cycle power plant (CCPP) with an advanced triple pressure reheat heat recovery steam generator (HRSG). Furthermore, a sensitivity analysis is carried out on the HRSG using a recent approach to differentiate between the sources of irreversibility. The proposed system was modelled using the IPSEpro software and further validated by the manufacturer’s data. The performance of the Sabiya CCPP was examined for different climatic conditions, pressure ratios, pinch point temperatures, high-pressure steam, and condenser pressure values. The results confirmed that 60.9% of the total exergy destruction occurs in the combustion chamber, which constitutes the main source of irreversibilities within a system. The exergy destruction was significantly affected by both the pressure ratio and the high-pressure steam, where the relation between them was seen to be inversely proportional. The high-pressure stage contributes about 50% of the exergy destruction within the HRSG compared to other stages and the reheat system, due to the high temperature difference between the streams and the large number of components, which leads to high energy loss to the surroundings. Numerous possibilities for improving the CCPP’s performance are introduced, based on the obtained results

    Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: A meta-analysis

    Get PDF
    Purpose: The aim of this study was to perform a meta-analysis of the diagnostic accuracy of 64-slice CT angiography for evaluation of coronary stent restenosis in patients treated with coronary stents when compared to conventional coronary angiography. Materials and Methods: A search of PUBMED/MEDLINE databases for English literature was performed. Only studies comparing 64-slice CT angiography with conventional coronary angiography for the detection of coronary in-stent restenosis (more than 50% stenosis) were included for analysis. Sensitivity and specificity estimates pooled across studies were tested using a fixed effects model. Fourteen studies met selection criteria for inclusion in the analysis. The mean value of assessable stents was 89%. Prevalence of in-stent restenosis following coronary stenting was 20% among these studies. Pooled estimates of the sensitivity and specificity of overall 64-slice CT angiography for the detection of coronary instent restenosis was 90% (95% CI: 86%, 94%) and 91% (95% CI: 90%, 93%), respectively, based on the evaluation of assessable stents. Diagnostic value of 64-slice CT angiography was found to decrease significantly when the analysis was performed with inclusion of nonassessable segments in five studies, with pooled sensitivity and specificity being 79% (95% CI: 68%, 88%) and 81% (95% CI: 77%, 84%). Stent diameter is the main factor affecting the diagnostic value of MSCT angiography. Conclusion: Our results showed that 64-slice CT angiography has high diagnostic value (both sensitivity and specificity) for detection of coronary in-stent restenosis based on assessable segments when compared to conventional coronary angiography

    Triangle of Safety Technique: A New Approach to Laparoscopic Cholecystectomy

    Get PDF
    Backgrounds and Study Aims. Common bile duct (CBD) injury is one of the most serious complications of laparoscopic cholecystectomy (LC). Misidentification of the CBD during dissection of the Calot's triangle can lead to such injuries. The aim of the authors in this study is to present a new safe triangle of dissection. Patients and Method. 501 patients under went LC in the following approach; The cystic artery is identified and mobilized from the gall bladder (GB) medial wall down towards the cystic duct which would simultaneously divide the medial GB peritoneal attachment. This is then followed by dividing the lateral peritoneal attachment. The GB will be unfolded and the borders of the triangle of safety (TST) are achieved: cystic artery medially, cystic duct laterally and the gallbladder wall superiorly. The floor of the triangle is then divided to delineate both cystic duct and artery in an area relatively far from CBD. Results. There were little significant immediate or delayed complications. The mean operating time was 68 minutes, nearly equivalent to the conventional method. Conclusions. Dissection at TST appears to be a safe procedure which clearly demonstrates the cystic duct and may help to reduce the CBD injuries

    Flow structure and heat transfer of jet impingement on a rib-roughened flat plate

    Get PDF
    The jet impingement technique is an effective method to achieve a high heat transfer rate and is widely used in industry. Enhancing the heat transfer rate even minimally will improve the performance of many engineering systems and applications. In this numerical study, the convective heat transfer process between orthogonal air jet impingement on a smooth, horizontal surface and a roughened uniformly heated flat plate is studied. The roughness element takes the form of a circular rib of square cross-section positioned at different radii around the stagnation point. At each location, the effect of the roughness element on heat transfer rate was simulated for six different heights and the optimum rib location and rib dimension determined. The average Nusselt number has been evaluated within and beyond the stagnation region to better quantify the heat transfer advantages of ribbed surfaces over smooth surfaces. The results showed both flow and heat transfer features vary significantly with rib dimension and location on the heated surface. This variation in the streamwise direction included both augmentation and decrease in heat transfer rate when compared to the baseline no-rib case. The enhancement in normalized averaged Nusselt number obtained by placing the rib at the most optimum radial location R/D = 2 was 15.6% compared to the baseline case. It was also found that the maximum average Nusselt number for each location was achieved when the rib height was close to the corresponding boundary layer thickness of the smooth surface at the same rib position

    An Exploration into Delay-Influencing Factors on Healthcare Construction Projects: The Case of Saudi Arabia

    Get PDF
    The construction project's delay is one of the biggest challenges that concern practitioners in the construction industry. The success or failure of construction projects is usually measured by the building team's achievement of the project's goals and objectives (ex., time and cost). The Kingdom of Saudi Arabia (KSA), one of the largest construction industries in the MENA region, is experiencing significant delays in some construction industry projects for different reasons. The major causes of delays in project completion in the construction sector in the KSA and how sensitive it is to healthcare projects specifically differ from one project to another. Thus, there is an urgent need to identify construction project-specific causes of delay in the healthcare sector. The research is based on a quantitative approach using the systematic review methodology, where 100 delayed projects in Saudi Arabia were sampled from the healthcare sector, and the causes of delays were captured and recorded. Various factors contributed significantly to the projects' delays, such as change orders, high expenditure, and poor budgetary estimates. This study's results will help project managers reduce the risks of project delays by identifying the influencing factors and their local context, monitoring them, and finding the proper way to mitigate or element their impacts, if possible

    Effects of mist fractions on heat transfer characteristics in a rotating roughened cooling passage

    Get PDF
    This paper investigates the effects of the mist fractions on heat transfer characteristics applied on a rotating U-channel with inclined ribs at an angle of 45°. This study has been conducted on five different mist percentages from 1 to 5 with a 1% increment at each step, and all of the cases have been investigated for Reynolds number values of 5000, 10000, 25000 and 40000. The numerical results obtained from the application of RNG k-ε turbulence model with enhanced-wall function were in good agreement with the experimental data of the smooth and ribbed channels both with and without mist addition. Results also demonstrated a 300% increase in the flow temperature difference and a noticeable increase in Nusselt number at each bend region and at the downstream of the leading edge around 25% and 110% respectively, at high mist fraction (5%); when compared with the case where only air was used. With %5 mist addition, the convective efficiency also reaches approximately 69%

    Exergetic and sustainability analysis of an intercooled gas turbine cogeneration plant with reverse osmosis desalination system

    Get PDF
    In this study, an advanced cogeneration plant based on a 100-MW aeroderivative intercooled gas turbine (ICGT) engine and large two-pass reverse osmosis (RO) desalination system is analyzed thermodynamically. The proposed model has been developed using specialized software and validated with manufacturers’ published data. Saline water is simulated using the latest physical properties available in the literature and treated as a real mixture. Combined energetic and exergetic performance criteria for the design of a cogeneration plant is presented as being, today, the most efficient method for accurate assessment of performance, which also permits quantification of system deficiencies. The performance of the proposed plant was investigated using different loads, ambient temperatures, pressure ratios, and feed water temperatures. The results show an intercooler system improves cogeneration plant performance despite having a negative impact on the combustion chamber performance because of its reduction of compressed air temperature. The ICGT engine is considered the best available choice to integrate with a RO unit because of its high pressure ratio and low power consumption in the compressors. From an operational perspective, full load and low ambient and high feed-water temperatures are highly recommended. The exergetic efficiency of the ICGT engine, RO system, and cogeneration plant are shown to be 44.3, 32.83, and 47.6%, respectively. From a sustainability perspective, the exergetic-environmental efficiency is slightly affected by ambient temperature, whereas it is highly affected by load variation. Based upon the obtained results, numerous possibilities are presented to improve the performance of cogeneration plants
    corecore