25 research outputs found

    Comorbidities and Risk Factors for Severe Outcomes in COVID-19 Patients in Saudi Arabia: A Retrospective Cohort Study

    Get PDF
    Purpose: The first novel coronavirus disease-19 (COVID-19) case in the Kingdom of Saudi Arabia (KSA) was reported in Qatif in March 2020 with continual increase in infection and mortality rates since then. In this study, we aim to determine risk factors which effect severity and mortality rates in a cohort of hospitalized COVID-19 patients in KSA. Method: We reviewed medical records of hospitalized patients with confirmed COVID-19 positive results via reverse-transcriptase-polymerase-chain-reaction (RT-PCR) tests at Prince Mohammed Bin Abdulaziz Hospital, Riyadh between May and August 2020. Data were obtained for patient’s demography, body mass index (BMI), and comorbidities. Additional data on patients that required intensive care unit (ICU) admission and clinical outcomes were recorded and analyzed with Python Pandas. Results: A total of 565 COVID-19 positive patients were inducted in the study out of which, 63 (11.1%) patients died while 101 (17.9%) patients required ICU admission. Disease incidences were significantly higher in males and non-Saudi nationals. Patients with cardiovascular, respiratory, and renal diseases displayed significantly higher association with ICU admissions (p< 0.001) while mortality rates were significantly higher in COVID-19 patients with cardiovascular, respiratory, renal and neurological diseases. Univariate cox proportional hazards regression model showed that COVID-19 positive patients requiring ICU admission [Hazard’s ratio, HR=4.2 95% confidence interval, CI 2.5– 7.2); p< 0.001] with preexisting cardiovascular [HR=4.1 (CI 2.5– 6.7); p< 0.001] or respiratory [HR=4.0 (CI 2.0– 8.1); p=0.010] diseases were at significantly higher risk for mortality among the positive patients. There were no significant differences in mortality rates or ICU admissions among males and females, and across different age groups, BMIs and nationalities. Hospitalized patients with cardiovascular comorbidity had the highest risk of death (HR=2.9, CI 1.7– 5.0; p=0.020). Conclusion: Independent risk factors for critical outcomes among COVID-19 in KSA include cardiovascular, respiratory and renal comorbidities

    Omics-based molecular techniques in oral pathology centred cancer: Prospect and challenges in Africa

    Get PDF
    : The completion of the human genome project and the accomplished milestones in the human proteome project; as well as the progress made so far in computational bioinformatics and “big data” processing have contributed immensely to individualized/personalized medicine in the developed world.At the dawn of precision medicine, various omics-based therapies and bioengineering can now be applied accurately for the diagnosis, prognosis, treatment, and risk stratifcation of cancer in a manner that was hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved the profciency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate details about disease disparity among diferent human populations are beginning to emerge. This would facilitate the use of tailor-made novel theranostic methods based on emerging molecular evidences

    Efficient Privacy-Preserving and Secure Authentication for Electric-Vehicle-to-Electric-Vehicle-Charging System Based on ECQV

    No full text
    The use of Electric Vehicles (EVs) is almost inevitable in the near future for the sake of the environment and our plant’s long-term sustainability. The availability of an Electric-Vehicle-Charging Station (EVCS) is the key challenge that owners are worried about. Therefore, we suggest benefiting from individual EVs that have excess energy and are willing to share it with other EVs in order to maximize the availability of EVCSs without the need to rely on the existing charging infrastructure. The Internet of Electric Vehicles (IoEV) is gradually gaining traction, allowing for a more efficient and intelligent transportation system by leveraging these capabilities between EVs. However, the IoEV is considered a trustless environment, with untrustworthy trading partners such as data sellers, buyers, and brokers. Data exchanged between the EV and the Energy AGgregator (EAG) or EV/EV can be used to analyze users’ behavior and compromise their privacy. Thus, a Vehicle-to-Vehicle (V2V)-charging system that is both secure and private must be established. Several V2V-charging systems with security and privacy features have been proposed. However, even if the transmitted communications are entirely anonymous, anonymity alone will not prevent the tracking adversary from reconstructing the target vehicle’s route. These systems frequently fail to find a balance between privacy concerns (e.g., trade traceability to achieve anonymity, and so on) and security measures. In this paper, we propose an efficient privacy-preserving and secure authentication based on Elliptic Curve Qu–Vanstone (ECQV) for a V2V-charging system that fulfils the essential requirements and re-authentication protocol in order to reduce the overhead of future authentication processes. The proposed scheme utilizes the ECQV implicit-certificate mechanism to create credentials and authenticate EVs. The proposed protocols provide efficient security and privacy to EVs, as well as an 88% reduction in computational time through re-authentication, as compared to earlier efforts

    Data protection and privacy of the Internet of Healthcare Things (IoHTs)

    Get PDF
    The Internet of Things (IoT) is an emerging field consisting of Internet-based globally connected network architecture. A subset of IoT is the Internet of Healthcare Things (IoHT) that consists of smart healthcare devices having significant importance in monitoring, processing, storing, and transmitting sensitive information. It is experiencing novel challenges regarding data privacy protection. This article discusses different components of IoHT and categorizes various healthcare devices based on their functionality and deployment. This article highlights the possible points and reasons for data leakage, such as conflicts in laws, the use of sub-standard devices, lack of awareness, and the non-availability of dedicated local law enforcement agencies. This article draws attention to the escalating demand for a suitable regulatory framework and analyzes compliance problems of IoHT devices concerning healthcare data privacy and protection regulations. Furthermore, the article provides some recommendations to improve the security and privacy of IoHT implementation

    Applications of Big Data Analytics to Control COVID-19 Pandemic

    No full text
    The COVID-19 epidemic has caused a large number of human losses and havoc in the economic, social, societal, and health systems around the world. Controlling such epidemic requires understanding its characteristics and behavior, which can be identified by collecting and analyzing the related big data. Big data analytics tools play a vital role in building knowledge required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis. Therefore, in this paper, we conduct a literature review to highlight the contributions of several studies in the domain of COVID-19-based big data analysis. The study presents as a taxonomy several applications used to manage and control the pandemic. Moreover, this study discusses several challenges encountered when analyzing COVID-19 data. The findings of this paper suggest valuable future directions to be considered for further research and applications

    Synergistic Killing of Pathogenic Escherichia Coli Using Camel Lactoferrin from Different Saudi Camel Clans and Various Antibiotics

    No full text
    Current study aimed to analyze the synergistic killing of pathogenic Escherichia coli using camel lactoferrin from different Saudi camel clans and various antibiotics. Methods: using multiple microbiological and protein analysis techniques, the results were shown that the purified camel lactoferrins (cLfs) from different Saudi camel have strong antimicrobial potentials against two strains of E. coli. Although all cLfs were superior relative to human or bovine lactoferrins (hLf or bLf), there was no noticeable difference in the antimicrobial potentials of cLfs from different camel clans. The effects of antibiotics and cLfs were synergistic, indicating the superiority of using cLf-antibiotic combinations against E. coli growth. Since these combinations possessed distinguished synergy profiles, it is likely that they can be used to enhance the low efficacy of antibiotics, as well as to control the problems associated with bacterial resistance. Furthermore, these combinations can reduce the cost of cure of bacterial infections, especially in the developing countries. The analysis of the molecular mechanisms of lactoferrin action revealed that expression of several E. coli proteins was affected by the treatment with these antibacterial factors. Several proteins of different molecular weights interacting with cLf-biotin were found. Scanning and transmission electron microscopy analysis revealed the presence of noticeable morphological changes associated with the treatment of E. coli strains by antibiotic carbenicillin or cLf alone, and in combination. Camel lactoferrin has superior potential killing of E. coli over bovine and human lactoferrin, and this potential can be further synergistically enhanced of cLF is combined with antibiotics

    Bacteriostatic and Bactericidal Activities of Camel Lactoferrins Against \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar \u3cem\u3eTyphi\u3c/em\u3e

    No full text
    Lactoferrin is an iron-binding glycoprotein present in various secretions (e.g., milk, tears, saliva, pancreatic juice), which performs multiple functions, with one of them being the antimicrobial defense. Purified camel lactoferrins (cLfs) from different Saudi camel clans, as well as human and bovine lactoferrins (hLf or bLf) were tested as antimicrobial agents against Salmonella enterica serovar Typhi (S. Typhi). All cLfs showed superior antibacterial potentials relative to hLf or bLf, while there was no noticeable difference in the antimicrobial capabilities between the cLfs from different camel clans. We observed synergy between the inhibitory activities of Lfs and antibiotics against bacterial growth. Expression of numerous bacterial proteins was affected by the treatment with Lf and its combinations, giving insight into the molecular mechanisms of the Lf action. Furthermore, several bacterial proteins were shown to interact with cLf-biotin. Scanning and transmission electron microscopy revealed the presence of obvious extracellular and intracellular changes after S. Typhi treatment by antibiotic (carbenicillin) or cLf alone, and in combination. The effects of antibiotics and Lf were synergistic, supporting the potential of the use of Lf-antibiotic combinations
    corecore