5 research outputs found

    Design and Development of a Field Applicable Gold Nanosensor for the Detection of Luteinizing Hormone

    No full text
    In this paper, we describe a novel strategy for the fabrication of a nanosensor for detecting luteinizing hormone (LH) of sheep using a gold nanoparticle-peptide conjugate. A new peptide sequence CDHPPLPDILFL (leutinizing hormone peptide, LHP) has been identified, using BLAST and Clustal W analysis, to detect antibody of LH (sheep). LHP has been synthesized and characterized, and their affinity toward anti-LH was established using enzyme linked immunosorbant assay (ELISA) technique. The thiol group in LHP directly binds with gold nanoparticles (AuNPs) to yield AuNP-LHP construct. Detailed physicochemical analysis of AuNP-LHP construct was determined using various analytical techniques. Nanosensor using gold nanoparticle peptide conjugate was developed on the basis of competitive binding of AuNP-LHP and LH toward anti-LH. Nitrocellulose membrane, precoated with anti-LH, was soaked in the mixture of AuNP-LHP and sample of analysis (LH). In the absence of LH (sheep), anti-LH coated on the membrane binds with AuNP-LHP, leading to a distinctive red color, while in the presence of LH, no color appeared in the membrane due to the interaction of anti-LH with LH thereby preventing the binding of AuNP-LHP with membrane bound anti-LH. The sensor assay developed in this study can detect LH (sheep) up to a minimal concentration of ~50 ppm with a high degree of reproducibility and selectivity. The gold-nanoparticle-peptide based nanosensor would be a simple, portable, effective, and low cost technique for infield applications

    Gold Nanoparticle Based Immunostrip Assay Method for Detection of Protein-A

    No full text
    We have successfully developed gold nanoparticle based immunostrip assay to detect protein-A (PA). Rabbit polyclonal antibody IGg (αPA) that has affinity to PA was conjugated to gold nanoparticles (GNPs) and the gold nanoconjugate (αPA-GNP) was used to detect protein-A by simple immunostrip assay method. ELISA experiments were used to confirm the retention of binding affinity of antibody towards protein-A after conjugation with gold nanoparticles

    Metal-based Anticancer Agents: Targeting Androgen-dependent and Androgen-independent Prostate and COX-positive Pancreatic Cancer Cells by Phenanthrenequinone Semicarbazone and its Metal Complexes

    No full text
    A planar, polycyclic and aromatic hydrocarbon ligand, namely 9,10-phenanthrenequinone semicarbazone, and its transition metal complexes have been synthesized and structurally characterized. The in vitro antiproliferative activity of these compounds against five human cancer cell lines revealed that they were effective against androgen receptor-positive/negative prostate cancer cells as well as COX-positive pancreatic BxPC-3 cancer cell line. The driving force behind such antiproliferative activity seems to be the up-regulated COX expression in these cells, which was amenable for targeting through metal complexation. These structural motifs can, therefore, serve as a starting point for developing novel cytotoxic agents against the growing number of prostate and pancreatic cancers

    Design and Development of a Field Applicable Gold Nanosensor for the Detection of Luteinizing Hormone

    No full text
    In this paper, we describe a novel strategy for the fabrication of a nanosensor for detecting luteinizing hormone (LH) of sheep using a gold nanoparticle-peptide conjugate. A new peptide sequence “CDHPPLPDILFL” (leutinizing hormone peptide, LHP) has been identified, using BLAST and Clustal W analysis, to detect antibody of LH (sheep). LHP has been synthesized and characterized, and their affinity toward anti-LH was established using enzyme linked immunosorbant assay (ELISA) technique. The thiol group in LHP directly binds with gold nanoparticles (AuNPs) to yield AuNP-LHP construct. Detailed physicochemical analysis of AuNP-LHP construct was determined using various analytical techniques. Nanosensor using gold nanoparticle peptide conjugate was developed on the basis of competitive binding of AuNP-LHP and LH toward anti-LH. Nitrocellulose membrane, precoated with anti-LH, was soaked in the mixture of AuNP-LHP and sample of analysis (LH). In the absence of LH (sheep), anti-LH coated on the membrane binds with AuNP-LHP, leading to a distinctive red color, while in the presence of LH, no color appeared in the membrane due to the interaction of anti-LH with LH thereby preventing the binding of AuNP-LHP with membrane bound anti-LH. The sensor assay developed in this study can detect LH (sheep) up to a minimal concentration of ∌50 ppm with a high degree of reproducibility and selectivity. The gold-nanoparticle-peptide based nanosensor would be a simple, portable, effective, and low cost technique for infield applications
    corecore