242 research outputs found
A reaction surface Hamiltonian treatment of the double proton transfer of formic acid dimer
The double proton transfer reaction of the isolated formic acid dimer has been investigated within the reaction surface Hamiltonian framework, using a newly calculated three‐dimensional ab initio potential energy surface. The symmetric (synchronous) proton movement, the asymmetric (asynchronous) proton movement and the relative motion of two formic acid molecules have been explicitly included in the calculation. The calculation gives a tunneling splitting of 0.004 cm-1, which is considerably smaller than a previous theoretical prediction (0.3 cm-1). An effective tunneling path has been calculated from the lowest vibrational eigenfunction of the reaction surface Hamiltonian, and the path deviates significantly from the minimum energy path on the potential energy surface. The new results are consistent with the conventional understanding of heavy-light-heavy mass combination reactions. The effective reaction path from this calculation reveals evidence of asymmetric proton movement. However, a synchronous double proton transfer is the major mode of reaction. Tunneling splittings for a few excited vibrational levels have also been calculated within the reaction surface Hamiltonian framework. Vibrational excitation of a large amplitude, heavy atom mode dramatically increases the tunneling splitting.application/pdfjournal articl
A theoretical study of multidimensional nuclear tunneling in malonaldehyde
Various aspects of the intramolecular proton transfer in malonaldehyde have been investigated theoretically within the reaction surface Hamiltonian framework, which was recently applied with a two‐dimensional surface to this molecule by Carrington and Miller. The present calculation, which involves a three‐dimensional reaction surface and a high level of ab initio accuracy, gives a tunneling splitting which is -50% smaller than experiment and a hydrogen/deuterium isotope effect that is within 40% of experiment with no adjustable parameter. The vibrational wave function has been analyzed to extract an effective curvilinear tunneling path on the hypersurface. The path calculations, and other analysis, clearly demonstrate the limitations of one‐dimensional models for polyatomic tunneling systems like malonaldehyde. In addition, tunneling splittings have been calculated for excited vibrational states of malonaldehyde, leading to new insight into the multidimensional character of proton transfer.application/pdfjournal articl
Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor.
A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins
Inactivation of a Single Copy of Crebbp Selectively Alters Pre-mRNA Processing in Mouse Hematopoietic Stem Cells
Global expression analysis of fetal liver hematopoietic stem cells (FL HSCs) revealed the presence of unspliced pre-mRNA for a number of genes in normal FL HSCs. In a subset of these genes, Crebbp+/− FL HSCs had less unprocessed pre-mRNA without a corresponding reduction in total mRNA levels. Among the genes thus identified were the key regulators of HSC function Itga4, Msi2 and Tcf4. A similar but much weaker effect was apparent in Ep300+/− FL HSCs, indicating that, in this context as in others, the two paralogs are not interchangeable. As a group, the down-regulated intronic probe sets could discriminate adult HSCs from more mature cell types, suggesting that the underlying mechanism is regulated with differentiation stage and is active in both fetal and adult hematopoiesis. Consistent with increased myelopoiesis in Crebbp hemizygous mice, targeted reduction of CREBBP abundance by shRNA in the multipotent EML cell line triggered spontaneous myeloid differentiation in the absence of the normally required inductive signals. In addition, differences in protein levels between phenotypically distinct EML subpopulations were better predicted by taking into account not only the total mRNA signal but also the amount of unspliced message present. CREBBP thus appears to selectively influence the timing and degree of pre-mRNA processing of genes essential for HSC regulation and thereby has the potential to alter subsequent cell fate decisions in HSCs
A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12
Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales
Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units
Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm–Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water molecules. The effects of double and single precision integration are discussed, and mixed precision GPU integration is shown to give extremely good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double precision CPU results)
In-Situ Probing of H2O Effects on a Ru-Complex Adsorbed on TiO2 Using Ambient Pressure Photoelectron Spectroscopy
- …
