11,850 research outputs found

    Radiative corrections in bumblebee electrodynamics

    Get PDF
    We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu-Goldstone boson) can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode can not be excluded from the effective theory.Comment: Revised version: contains some more elaborated interpretation of the results. Conclusions improve

    Scaling in a continuous time model for biological aging

    Full text link
    In this paper we consider a generalization to the asexual version of the Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ\delta--functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure

    Testing the Equivalence of Regular Languages

    Full text link
    The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In this paper we improve the best-case running time, present an extension of this algorithm to non-deterministic finite automata, and establish a relationship between this algorithm and the one proposed in Almeida et al. We also present some experimental comparative results. All these algorithms are closely related with the recent coalgebraic approach to automata proposed by Rutten

    Orbit bifurcations and the scarring of wavefunctions

    Full text link
    We extend the semiclassical theory of scarring of quantum eigenfunctions psi_{n}(q) by classical periodic orbits to include situations where these orbits undergo generic bifurcations. It is shown that |psi_{n}(q)|^{2}, averaged locally with respect to position q and the energy spectrum E_{n}, has structure around bifurcating periodic orbits with an amplitude and length-scale whose hbar-dependence is determined by the bifurcation in question. Specifically, the amplitude scales as hbar^{alpha} and the length-scale as hbar^{w}, and values of the scar exponents, alpha and w, are computed for a variety of generic bifurcations. In each case, the scars are semiclassically wider than those associated with isolated and unstable periodic orbits; moreover, their amplitude is at least as large, and in most cases larger. In this sense, bifurcations may be said to give rise to superscars. The competition between the contributions from different bifurcations to determine the moments of the averaged eigenfunction amplitude is analysed. We argue that there is a resulting universal hbar-scaling in the semiclassical asymptotics of these moments for irregular states in systems with a mixed phase-space dynamics. Finally, a number of these predictions are illustrated by numerical computations for a family of perturbed cat maps.Comment: 24 pages, 6 Postscript figures, corrected some typo

    Scarring by homoclinic and heteroclinic orbits

    Full text link
    In addition to the well known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantized, thus introducing strong quantum correlations. The corresponding quantization rules are also established. This opens the door for developing computationally tractable methods to calculate eigenstates of chaotic systems.Comment: 5 pages, 4 figure

    Decoherence of Semiclassical Wigner Functions

    Get PDF
    The Lindblad equation governs general markovian evolution of the density operator in an open quantum system. An expression for the rate of change of the Wigner function as a sum of integrals is one of the forms of the Weyl representation for this equation. The semiclassical description of the Wigner function in terms of chords, each with its classically defined amplitude and phase, is thus inserted in the integrals, which leads to an explicit differential equation for the Wigner function. All the Lindblad operators are assumed to be represented by smooth phase space functions corresponding to classical variables. In the case that these are real, representing hermitian operators, the semiclassical Lindblad equation can be integrated. There results a simple extension of the unitary evolution of the semiclassical Wigner function, which does not affect the phase of each chord contribution, while dampening its amplitude. This decreases exponentially, as governed by the time integral of the square difference of the Lindblad functions along the classical trajectories of both tips of each chord. The decay of the amplitudes is shown to imply diffusion in energy for initial states that are nearly pure. Projecting the Wigner function onto an orthogonal position or momentum basis, the dampening of long chords emerges as the exponential decay of off-diagonal elements of the density matrix.Comment: 23 pg, 2 fi
    • …
    corecore