2,674 research outputs found

    Fast Distributed Computation of Distances in Networks

    Get PDF
    This paper presents a distributed algorithm to simultaneously compute the diameter, radius and node eccentricity in all nodes of a synchronous network. Such topological information may be useful as input to configure other algorithms. Previous approaches have been modular, progressing in sequential phases using building blocks such as BFS tree construction, thus incurring longer executions than strictly required. We present an algorithm that, by timely propagation of available estimations, achieves a faster convergence to the correct values. We show local criteria for detecting convergence in each node. The algorithm avoids the creation of BFS trees and simply manipulates sets of node ids and hop counts. For the worst scenario of variable start times, each node i with eccentricity ecc(i) can compute: the node eccentricity in diam(G)+ecc(i)+2 rounds; the diameter in 2*diam(G)+ecc(i)+2 rounds; and the radius in diam(G)+ecc(i)+2*radius(G) rounds.Comment: 12 page

    On extension-shearing bending-twisting coupled laminates

    Get PDF
    This article presents details of the development of a special class of laminate, possessing Extension-Shearing Bending-Twisting coupling, necessary for optimised passive-adaptive flexible wing-box structures. The possibility of achieving a measurable drag reduction in cruise flight, without the cost or reliability issues associated with active control mechanisms, is of significant interest for achieving increased fuel burn efficiency, and meeting associated emissions targets. The introduction of passive Bending-Twisting coupling at the wing-box level has been previously demonstrated through laminate level tailoring with Extension-Shearing coupling only, but the limited design space and the possibility for ply terminations (to produce tapered thickness) effectively rule out this special class of laminate for practical construction. The study is now broadened to consider laminates with Extension-Shearing and Bending-Twisting coupling, beyond the less well-known un-balanced and symmetric design rule or indeed balanced and symmetric designs with off-axis alignment. Results reveal a vast laminate design space with Extension-Shearing coupling that can be maximised without the unfavourable strength characteristics associated with off-axis alignment. Results also reveal that shear buckling strength can be maximised through Bending-Twisting coupling when load reversal is not a design constraint

    Tapered laminate designs for new non-crimp fabric architectures

    Get PDF
    Non-Crimp Fabric (NCF) materials are now available in a range of areal weights and layer architectures, including 0/45, 0/−45, 45/−45 and 0/90, which correspond to the standard ply orientations employed in traditional UD material lay-ups. The benefit of NCF material is generally associated with increased deposition rate, but this advantage may be offset by reduced design freedoms when a specific form of mechanical coupling behaviour is required, layer terminations must be introduced and/or thermal warping distortion eliminated. This article investigates the extent to which new NCF architectures can be tailored to achieve warp free tapered laminates with mechanical Extension-Shearing Bending-Twisting coupling, by single axis (longitudinal) deposition of all ply angles; thus avoiding ply discontinuities that may be introduce in large component manufacture. Lamination parameter design spaces are used to demonstrate the extent of the feasible solutions both before and after applying a laminate tapering scheme

    Dependability in Aggregation by Averaging

    Get PDF
    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a fundamental invariant, commonly designated as "mass conservation". We will argue that this main invariant is often broken in practical settings, and that additional mechanisms and modifications are required to maintain it, incurring in some degradation of the algorithms performance. In particular, we discuss the behavior of three representative algorithms Push-Sum Protocol, Push-Pull Gossip protocol and Distributed Random Grouping under asynchronous and faulty (with message loss and node crashes) environments. More specifically, we propose and evaluate two new versions of the Push-Pull Gossip protocol, which solve its message interleaving problem (evidenced even in a synchronous operation mode).Comment: 14 pages. Presented in Inforum 200

    Approaches to Conflict-free Replicated Data Types

    Full text link
    Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions, and always converging deterministically: replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended as a tutorial for prospective CRDT researchers and designers, it provides solid coverage of the essential concepts, clarifying some misconceptions which frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.Comment: 36 page

    Spectra: Robust Estimation of Distribution Functions in Networks

    Get PDF
    Distributed aggregation allows the derivation of a given global aggregate property from many individual local values in nodes of an interconnected network system. Simple aggregates such as minima/maxima, counts, sums and averages have been thoroughly studied in the past and are important tools for distributed algorithms and network coordination. Nonetheless, this kind of aggregates may not be comprehensive enough to characterize biased data distributions or when in presence of outliers, making the case for richer estimates of the values on the network. This work presents Spectra, a distributed algorithm for the estimation of distribution functions over large scale networks. The estimate is available at all nodes and the technique depicts important properties, namely: robust when exposed to high levels of message loss, fast convergence speed and fine precision in the estimate. It can also dynamically cope with changes of the sampled local property, not requiring algorithm restarts, and is highly resilient to node churn. The proposed approach is experimentally evaluated and contrasted to a competing state of the art distribution aggregation technique.Comment: Full version of the paper published at 12th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), Stockholm (Sweden), June 201

    A Case for Partitioned Bloom Filters

    Get PDF
    In a partitioned Bloom Filter the mm bit vector is split into kk disjoint m/km/k sized parts, one per hash function. Contrary to hardware designs, where they prevail, software implementations mostly adopt standard Bloom filters, considering partitioned filters slightly worse, due to the slightly larger false positive rate (FPR). In this paper, by performing an in-depth analysis, first we show that the FPR advantage of standard Bloom filters is smaller than thought; more importantly, by studying the per-element FPR, we show that standard Bloom filters have weak spots in the domain: elements which will be tested as false positives much more frequently than expected. This is relevant in scenarios where an element is tested against many filters, e.g., in packet forwarding. Moreover, standard Bloom filters are prone to exhibit extremely weak spots if naive double hashing is used, something occurring in several, even mainstream, libraries. Partitioned Bloom filters exhibit a uniform distribution of the FPR over the domain and are robust to the naive use of double hashing, having no weak spots. Finally, by surveying several usages other than testing set membership, we point out the many advantages of having disjoint parts: they can be individually sampled, extracted, added or retired, leading to superior designs for, e.g., SIMD usage, size reduction, test of set disjointness, or duplicate detection in streams. Partitioned Bloom filters are better, and should replace the standard form, both in general purpose libraries and as the base for novel designs.Comment: 21 page

    Effect of Design Heuristics on the Compression and Shear Buckling Performance of Infinitely Long Plates With Bending-Twisting Coupling

    Get PDF
    This article investigates the effect of design heuristics, including ply percentages and ply contiguity constraints, on the compression and shear buckling performance of Bending-Twisting coupled infinitely long laminated plates with simply supported edges. The buckling solutions are presented as contour maps, representing non-dimensional buckling factors, which are superimposed on the lamination parameter design spaces for laminates with standard ply orientations. The applicability of the results extends beyond the current certification envelope, comprising symmetric laminate configurations. Indeed, the contour maps are applicable to two recently developed databases containing non-symmetric and symmetric laminates with either Bending-Twisting or Extension-Shearing Bending-Twisting coupling. The contour maps provide insights into buckling performance improvements that are non-intuitive and facilitate comparison between hypothetical and practical designs. The databases are illustrated through point clouds of lamination parameter coordinates, which demonstrate the effect of applying design heuristics
    • …
    corecore