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ABSTRACT 

This article investigates the effect of design heuristics, including ply percentages and ply contiguity 

constraints, on the compression and shear buckling performance of Bending-Twisting coupled 

infinitely long laminated plates with simply supported edges.  The buckling solutions are presented as 

contour maps, representing non-dimensional buckling factors, which are superimposed on the 

lamination parameter design spaces for laminates with standard ply orientations.  The applicability of 

the results extends beyond the current certification envelope, comprising symmetric laminate 

configurations.  Indeed, the contour maps are applicable to two recently developed databases 

containing non-symmetric and symmetric laminates with either Bending-Twisting or Extension-

Shearing Bending-Twisting coupling.  The contour maps provide insights into buckling performance 

improvements that are non-intuitive and facilitate comparison between hypothetical and practical 

designs.  The databases are illustrated through point clouds of lamination parameter coordinates, 

which demonstrate the effect of applying design heuristics.   

 

1 INTRODUCTION 

Recent research has led to laminate design databases containing Extension-Shearing [1] and/or 

Bending-Twisting coupling [2].  The results have demonstrated that the design spaces contain 

predominantly non-symmetric stacking sequences.  All are immune to thermal warping distortions by 

virtue of the fact that their coupling stiffness properties are null (B = 0); as would be expected from 

symmetric laminate configurations.  Heuristic design rules [3] are applied to these databases to assess 

the effect on buckling performance on a reduced design space, representing practical rather than 

hypothetical designs.   

The data are presented as lamination parameter [4] point clouds, where each point represents an 

individual laminate design.  The use of standard ply orientations, i.e. 0, 90 and 45 plies, results in 

a feasible design space defined by a regular tetrahedron.  The application of the 10% rule, 

corresponding to a minimum of 10% plies in each of the standard ply orientations, is illustrated in Fig. 

1 for extensional stiffness.  The bounds of the 10% rule form a triangular plane within the feasible 

region of the design space when the extensional stiffness is uncoupled, i.e. for Bending-Twisting 

coupled only designs, and forms a reduced tetrahedron when Extension-Shearing (and Bending-

Twisting) coupled is present.   

By contrast, the lamination parameter point clouds for bending stiffness are illustrated in Fig. 2.  

Here, the effect of the 10% rule appears to have limited impact on the extent of the point clouds, in 

view of the proximity to the bounds of the feasible region, which is significant given that these regions 

correspond to upper-bound buckling load solutions. 

A set of high fidelity orthographic projections, given in Fig. 3, help to provide further detail of the 

10% rule, and are described later in the context of the impact of this in-plane material constraint on the 

out-of-plane material properties, with specific reference to Bending-Twisting coupling. 

mailto:Christopher.York@Glasgow.ac.uk
http://www.gla.ac.uk/schools/engineering/staff/christopheryork/
mailto:sergio.frascino@gmail.com


C. B. York and S. F. M. Almeida 

 

New insights into compression and shear buckling strength are provided via buckling factor 

contour maps, which are superimposed onto the lamination parameter design spaces.  Contour 

mapping is applied to cross-sections through the design space, to allow detailed interrogation of the 

effects of Bending-Twisting coupling on buckling strength.  The mapping is also applied to external 

surfaces of the feasible domain of lamination parameters, since these surfaces represent the bounds on 

buckling strength.  The results are applicable to infinitely long plates, which represent useful lower-

bound solutions for preliminary design optimisation.   

 

2 BUCKLING OF INFINITELY LONG PLATES 

Bounds on the buckling performance of (infinitely) long, simply supported, ‘symmetric’ Bending-

Twisting coupled laminates have been extensively investigated under both compression [5] and/or 

shear [6,7].  Hence, in view of the significant number of non-symmetric and other forms of sub-

sequence symmetry identified elsewhere [1, 2], which result in a vast increase in the possible design 

space for Bending-Twisting coupled laminate designs, the possibility of additional gains in buckling 

performance, above symmetric laminates, can now be explored.   

Infinitely long compression loaded plates with simply supported edges provide a convenient lower-

bound solution, and are useful for preliminary design.  A closed form solution, necessary to handle the 

vast number of designs, can also be used to assess the buckling strength exactly: 
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For Bending-Twisting coupled laminates, approximate closed form solutions must be adopted [8, 

9], or developed.  Noting however that there are no closed form solutions for shear loaded plates, the 

following section develops new closed form solutions applicable to both compression and shear 

buckling.  

 

2.1 Closed form solution for Compression Buckling 

For orthotropic laminates, the following buckling equation, representing a 2 dimensional, 4
th
 order 

polynomial can be solved against the exact closed form buckling solution from equally spaced points 

across the lamination parameter design space: 
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where in this case, k = kx, and is defined by: 
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The lamination parameters are related to the bending stiffness matrix [D] by: 
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Noting that 
D

Rc  = 0 for standard ply orientations. 

The laminate invariants are defined in terms of the reduced stiffnesses: 
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Diso = UEH
3
/12  (6) 

Exact buckling factor results are established at 15 sample points corresponding to the grid point 

intersections, formed by the equilateral triangles, illustrated on the cross-section in Fig. 4(a).  These 

results give rise to the coefficients c1 – c15 in Eq. (2), leading to the following closed form solution, 

which is applicable to all fully uncoupled laminates [10]: 
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Equation (7) is used to develop the isolines of constant buckling factor, kx,, which are illustrated 

on Fig. 4(b). The top corners of the triangular region of Fig. 4(b), representing laminates with 90 or 

0 degree plies only, have buckling factor kx, = 1.68 (with buckling half-waves b/ = 1.94 = 

(D22/D11)
¼
 and /b = 1.94, respectively), whereas the bottom corner, representing laminates with 45 

plies only, has buckling factor kx, = 5.05 (with buckling half-wave  = b).  The centre of the contour 

map, represents the fully isotropic laminate, and for which all lamination parameters are zero, gives 

the classical buckling factor result, kx, = 4.00. 

The three dimensional representation of the feasible design space in Fig. 4(a) indicates the 

positions through which other cross-sections are taken in order to maintain constant magnitude of 

Bending-Twisting coupling.   

For Bending-Twisting coupled laminates, (
D

c
 ≠ 0) an exact infinite strip analysis [11] has been 

adopted to generate buckling factors at the same relative grid point locations, as illustrated on Fig. 

4(a), for each discrete cross-section throughout the lamination parameter design space.  This analysis 

was also used as a validation process for the compression buckling results.  Coefficients for other 

cross-sections throughout the lamination parameter design space, 0 ≤ 
D

c
 ≤ 0.9, are given in Table 1.   

Note: 

 When 
D

c
 = ±1.0, the design space degenerates to a single point with kx, = 2.19. 

 Lamination parameter bounds are -1.0 ≤ 
D

c
 ≤ 1.0.  Negative 

D

c
 are to positive 

D

c
. 

The buckling strength relationship at any cross-section is determined by substituting the 

appropriate coefficients of Table 1 into Eq. (2).  Note that the number of significant figures in the 

coefficients of Table 1 have been reduced, but are sufficient to maintain a buckling factor accurate to 2 

decimal places. 

 

2.2  Closed form solution for Shear Buckling 

For shear bucking, the same procedure is adopted as for compression buckling, using the exact 

infinite strip analysis [11] to generate buckling factors at the same relative grid point locations, as 

illustrated on Fig. 4(a). 

For the orthotropic laminate, the closed form solution for positive and negative shear loading is 

identical and is obtained by substituting the calculated coefficients into Eq. (2).   
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where in this case, k = kxy, and is defined by: 
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and gives the classical shear buckling factor result, kxy, = 5.34 [12], for the isotropic design; when all 

lamination parameters are set to zero.  The resulting contour map is illustrated in Fig. 4(c), illustrating 

isolines of constant buckling load factor across the lamination parameter design space.  Positive shear 

direction is defined together with positive fibre angle direction in Fig. 4(a).  The top corners of the 

triangular region of Fig. 4(c), representing laminates with 90 and 0 degree plies only, have shear 

buckling factors kxy, = 4.91 and 1.31, respectively, whereas the bottom corner, representing laminates 

with 45 plies only, has buckling factor kxy, = 5.61.   

For Bending-Twisting coupled laminates, 
D

c
 ≠ 0, coefficients for other cross-sections within the 

lamination parameter designs space, 0 ≤ 
D

c
 ≤ 0.9, have been calculated for positive and negative 

shear respectively, but tables containing these coefficients are not presented due to space limitations.   

Note: 

 When 
D

c
 = 1.0, the design space degenerates to a point with minimum and maximum kxy, = 

1.38 and 8.84, for positive and negative shear, respectively. 

 Lamination parameter bounds are -1.0 ≤ 
D

c
 ≤ 1.0.  Negative 

D

c
 are synonymous with a 

reversal in the shear load direction, hence only positive 
D

c
 are given. 

Ignoring the effects of Bending-Twisting coupling continues to broadly justified on the basis that 

the effects dissipate for laminates with a large number of plies.  However, buckling strength is strongly 

influenced by such coupling in thin laminates; shear buckling strength may be overestimated (unsafe) 

or underestimated (over-designed) if the effects of Bending-Twisting coupling are ignored.  This can 

be appreciated by the fact that shear loading and Bending-Twisting coupling (
D

c
≠ 0) both give rise to 

skewed nodal lines in the buckling mode shapes.  Hence, the presence of Bending-Twisting coupling 

may augment or counter the effect of shear load, depending on whether the resulting diagonal tension 

is perpendicular or parallel to the dominant angle-ply direction.   

2.3 Contour mapping 

The closed form solution of Eq. (2), together with the associated coefficients, are used to develop 

the selection of contours maps that follow.   

Figure 5 represents a series of compression buckling factor contour maps, corresponding to 

gradually increasing magnitude in Bending-Twisting coupling.  The symmetric contours of the fully 

uncoupled designs, of Fig. 4(b), now give way to increasing asymmetry in the contour pattern.   

This contour mapping is applied to cross-sections through the design space, to allow detailed 

interrogation of the effects of Bending-Twisting coupling on buckling strength.   

The mapping is also applied to external surfaces of the feasible domain of lamination parameters in 

Figs 8 and 9, since these surfaces represent the bounds on buckling factor.  These surface contours 

reveal local optima in locations that are non-intuitive, i.e. the optimum shear buckling factor kxy, = 

9.06 @ (
D ,

D

R ,
D

c
) = (-0.18, -0.64, -0.82), which exceeds kxy, = 8.84 at 

D

c
 = 1.0.   
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3 Design space reduction – Heuristic constraints 

Figures 10 and 11 provided high fidelity orthographic projections of design space for laminates 

with Extension-Shearing Bending-Twisting coupling.  Each point within the 3-dimensional design 

space represents a physical design, for which a stacking sequence is known.  These results represent 

the available solutions after applying the 10% design rule and can be compared to the full design 

space, presented elsewhere [2].  The key observation is that the impact on the design space for 

extensional stiffness, to which the 10% rule directly applies, in the context of a material strength 

constraint, is not reflected in the design space for bending stiffness.  This implies that the impact on 

buckling strength is not significant.   

Table 2 demonstrate the number of laminate designs for Extension-Shearing Bending-Twisting 

coupled laminate designs with respect to ply contiguity constraints (1, ≤2 and ≤3) within the 10% rule 

design space.  These results demonstrate that the common contiguity constraint of having no more 

than 3 adjacent plies with the same orientation, closely matches the constraint of the 10% rule across 

many of the ply number groupings with up to (n =) 18 plies, for both symmetric and non-symmetric 

designs. 

4 Conclusions 

 New insights have been given for optimum compression and shear buckling strength for 

infinitely long plates, through the superposition of contour maps onto the lamination 

parameter design space for composite laminates with Bending-Twisting coupling.  

 The impact of the 10% rule has also been illustrated on the reduced lamination parameter 

design space for extensional stiffness, for both symmetric and non-symmetric designs, 

containing all solutions with standard ply orientations and up to 18 plies.  By contrast, there is 

no visible impact on the extent of the design space for bending stiffness, which implies that 

buckling strength is not indirectly affected by the application of the 10% design rule.  

 The reduced design space, resulting from the application of the 10% rule, has been shown to 

be virtually identical to the application of the common design constraint of limiting the 

number of contiguous plies, i.e. adjacent plies with the same orientation, to a maximum of 3. 
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D

c
 

 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

c1 4.000 3.976 3.903 3.781 3.606 3.374 3.078 2.708 2.198 1.903 

c2 0.000 -0.014 -0.054 -0.119 -0.210 -0.329 -0.481 -0.674 -0.905 -1.384 

c3 -1.049 -1.049 -1.049 -1.050 -1.053 -1.060 -1.078 -1.099 -1.369 -0.042 

c4 -1.217 -1.235 -1.291 -1.391 -1.539 -1.742 -2.012 -2.395 -3.022 -2.872 

c5 0.000 0.000 -0.001 -0.003 -0.006 -0.012 -0.024 -0.008 -0.421 2.058 

c6 0.000 0.007 0.027 0.057 0.098 0.145 0.195 0.229 0.300 -0.358 

c7 0.000 -0.014 -0.073 -0.185 -0.360 -0.598 -0.894 -1.195 -1.324 -1.151 

c8 0.000 -0.001 0.000 -0.001 -0.001 -0.001 -0.004 0.029 -0.299 1.621 

c9 0.000 0.004 0.009 0.009 0.003 -0.014 -0.044 -0.108 -0.114 -1.027 

c10 0.340 0.351 0.390 0.452 0.542 0.671 0.843 0.997 0.975 3.589 

c11 -0.360 -0.399 -0.509 -0.697 -0.993 -1.456 -2.213 -3.501 -5.882 -11.944 

c12 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.012 -0.092 0.451 

c13 0.000 -0.002 -0.003 -0.004 -0.004 -0.003 0.001 0.003 0.055 -0.238 

c14 -0.034 -0.032 -0.041 -0.052 -0.066 -0.083 -0.127 -0.262 -0.581 0.594 

c15 0.000 -0.018 -0.047 -0.068 -0.065 -0.008 0.159 0.561 1.484 3.064 

 

Table 1 – Compression buckling coefficients for Eq. (2) for 0  
D

c
 < 1.0. 

 

 (a) Symmetric laminates (b) Non-symmetric laminates 

n 1 ≤2 ≤3 10% 1 ≤2 ≤3 10% 

7 2 

  

2     

8 

    

    

9 26 40 42 42 4 8  8 

10 

 

34 

 

36     

11 94 150 190 192 8 38 48 48 

12 

 

214 224 260 8 32 36 36 

13 382 934 1,258 1,300 146 916 1,240 1,292 

14 

 

1,114 1,264 1,560 36 412 560 592 

15 1,380 4,796 6,940 7,320 924 14,212 19,970 21,152 

16 

 

5,104 6,102 7,882 266 5,554 8,498 9,288 

17 4,720 21,840 33,478 36,176 6,582 165,022 251,098 270,848 

18 

 

22,016 27,772 37,212 1,896 62,632 102,178 114,638 

 

Table 2 – Effect of contiguity constraint and 10% design rule for: (a) Symmetric and; (b) Non-

symmetric (Angle- and Cross-ply) Extension-Shearing Bending-Twisting coupled laminates. 
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Figure 1: Three dimensional lamination parameter design spaces for extensional stiffness, 

corresponding to: (a) Symmetric and (b) Non-symmetric Bending-Twisting coupled laminates with up 

to 18 plies and; (c) Symmetric and (d) Non-symmetric Extension-Shearing Bending-Twisting coupled 

laminates with up to 18 plies. 
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Figure 2: Three dimensional lamination parameter design spaces for bending stiffness, corresponding 

to: (a) Symmetric and (b) Non-symmetric Bending-Twisting coupled laminates with up to 18 plies and; 

(c) Symmetric and (d) Non-symmetric Extension-Shearing Bending-Twisting coupled laminates with 

up to 18 plies. 

 

(a) 

 

(b) 

Figure 3: Lamination parameter design space with ply percentage mapping for: (a) 

orthotropic stiffness (
A ,

A

R ) and; (b) anisotropic stiffness (
A

c ) relating to differing angle-

ply percentages.  The 10% design rule constraint is also illustrated. 
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(a) 

 
(b) 

 
(c) 

Figure 4: Three-dimensional representation of the feasible design space indicating (a) the positions through which two dimensional cross-sections have 

been taken.  Positive shear load and positive fibre orientation are defined in the thumbnail sketch.  Sections representing fully uncoupled laminates [10] in 

bending, correspond to: (b) compression buckling contours, kx, (= Nxb
2
/2

DIso) and; (c) positive/negative shear buckling contours, kxy, (= Nxyb
2
/2

DIso). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5: Compression buckling factor contours, kx, (= Nxyb
2
/2

DIso), for: (a) 
D

c
 = 0.1: 

D

c
 = 0.3, 

D

c
 = 0.5 and 

D

c
 = 0.7, representing Bending-Twisting 

coupled laminates.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 – Positive shear buckling factor contours, kxy, (= Nxyb
2
/2

DIso), for: (a) 
D

c
 = 0.1: 

D

c
 = 0.3, 

D

c
 = 0.5 and 

D

c
 = 0.7, representing Bending-

Twisting coupled laminates.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 – Negative shear buckling factor contours, kxy, (= Nxyb
2
/2

DIso), for: (a) 
D

c
 = 0.1: 

D

c
 = 0.3, 

D

c
 = 0.5 and 

D

c
 = 0.7, representing Bending-

Twisting coupled laminates.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: Lamination parameter design space surface contours for Compression buckling factor, kx, (= Nxb
2
/2

DIso), corresponding to 3
rd

 angle 

orthographic projections of: (a) Rear (sloping) face with; (b) Left (sloping) face; (c) Front (sloping) face and; Right (sloping) face. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9: Lamination parameter design space surface contours for Positive Shear buckling factor, kxy, (= Nxb
2
/2

DIso), corresponding to 3
rd

 angle 

orthographic projections of: (a) Rear (sloping) face; (b) Left (sloping) face; (c) Front (sloping) face and; Right (sloping) face. 
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Figure 10 – Lamination parameter design spaces for non-symmetric Extension-Shearing Bending-Twisting coupled laminates with 7  n  18, 

corresponding to orthographic projections (plan, front elevation and side elevation) for extensional (
A ,

A

R ,
A

c
) and bending stiffness (

D ,
D

R ,
D

c
). 



C. B. York and S. F. M. Almeida 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 A

 A

R
 A

c

 A

 A

R
 A

c

 A

 A

R
 A

c

 A

 A

R
 A

c

  

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 D

R
 D

c

 D

 D

R
 D

c

 D

 D

R
 D

c

 D

 D

R
 D

c

 D

 

    
 

Figure 11 – Lamination parameter design spaces for symmetric Extension-Shearing Bending-Twisting coupled laminates with 7  n  18, corresponding to 

orthographic projections (plan, front elevation and side elevation) for extensional (
A ,

A

R ,
A

c
) and bending stiffness (

D ,
D

R ,
D

c
). 


