26,236 research outputs found

    Brane bounce-type configurations in a string-like scenario

    Get PDF
    Brane world six dimensional scenarios with string like metric has been proposed to alleviate the problem of field localization. However, these models have been suffering from some drawbacks related with energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a model where a brane is made of a scalar field with bounce-type configurations and embedded in a bulk with a string-like metric. This model produces a sound AdS scenario where none of the important physical quantities is infinite. Among these quantities are the components of the energy momentum tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another advantage of this model is that the warp factor can be obtained analytically from the equations of motion for the scalar field, obtaining as a result a thick brane configuration, in a six dimensional context. Moreover, the study of the scalar field localization in these scenario is done.Comment: 15 pages, 5 figures. To appear in Physics Letters

    DMRG study of the Bond Alternating \textbf{S}=1/2 Heisenberg ladder with Ferro-Antiferromagnetic couplings

    Full text link
    We obtain the phase diagram in the parameter space (J′/J,γ)(J'/J, \gamma) and an accurate estimate of the critical line separating the different phases. We show several measuments of the magnetization, dimerization, nearest neighbours correlation, and density of energy in the different zones of the phase diagram, as well as a measurement of the string order parameter proposed as the non vanishing phase order parameter characterizing Haldane phases. All these results will be compared in the limit J′/J≫1J'/J\gg 1 with the behaviour of the S=1\textbf{S}=1 Bond Alternated Heisenberg Chain (BAHC). The analysis of our data supports the existence of a dimer phase separated by a critical line from a Haldane one, which has exactly the same nature as the Haldane phase in the S=1\textbf{S}=1 BAHC.Comment: Version 4. 8 pages, 15 figures (12 figures in document

    Ultimate periodicity of b-recognisable sets : a quasilinear procedure

    Full text link
    It is decidable if a set of numbers, whose representation in a base b is a regular language, is ultimately periodic. This was established by Honkala in 1986. We give here a structural description of minimal automata that accept an ultimately periodic set of numbers. We then show that it can verified in linear time if a given minimal automaton meets this description. This thus yields a O(n log(n)) procedure for deciding whether a general deterministic automaton accepts an ultimately periodic set of numbers.Comment: presented at DLT 201

    Radiative corrections in bumblebee electrodynamics

    Get PDF
    We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu-Goldstone boson) can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode can not be excluded from the effective theory.Comment: Revised version: contains some more elaborated interpretation of the results. Conclusions improve
    • …
    corecore