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Brane world six-dimensional scenario with string-like metric has been proposed to alleviate the problem
of field localization. However, these models have been suffering from some drawbacks related with
energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a
model where a brane is made of a scalar field with bounce-type configurations and embedded in a
bulk with a string-like metric. This model produces a sound AdS scenario where none of the important
physical quantities is infinite. Among these quantities are the components of the energy–momentum
tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another
advantage of this model is that the warp factor can be obtained analytically from the equations of
motion for the scalar field, obtaining as a result a thick brane configuration, in a six-dimensional context.
Moreover, the study of the scalar field localization in this scenario is done.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The suggestion that our world is a 3-brane embedded in a
higher-dimensional space–time has attracted the attention of the
physics community in the last years. It is basically because the
brane world idea has brought solution for some intriguing prob-
lems in the Standard Model, like the hierarchy problem [1–5].
Another important possibility, that seems to be open in brane
models, is that of explaining the smallness of the observed cos-
mological constant. The fact that extra space–time dimensions can
introduce extra contributions to the vacuum energy that can al-
low for a vanishing four-dimensional cosmological constant was
observed some years ago independently of branes [6,7]. Branes on
the other hand allow for an interplay between higher-dimensional
and four-dimensional cosmological constant contributions. Such a
self-tuning mechanism has been pointed out some years ago [8].
Unfortunately, the solutions found are infested with naked singu-
larities.

The mainly kinds of theories that carrier the brane world ba-
sic idea are the one first proposed by Arkani-Hamed, Dimopoulos
and Dvali [1–3] and the so-called Randall–Sundrum model [4,5].
In the last, it is assumed that, in principle, all the matter fields
are constrained to propagate only on the brane, whereas grav-
ity is free to propagate in the extra dimensions. This fact is well
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illustrated if one considers the propagation of gauge bosons in the
extra-dimensional space–time. The result is that, unless the size of
the extra dimensions is very small, the modification in their in-
teractions will not be in accordance with phenomenology. If this
happens with the gauge bosons it is reasonable to admit that all
ordinary matter, that is, all particles that experience the same in-
teractions, are submitted to this same restriction. This leaves to
the conclusion that all matter fields are restricted to live on the
brane, which may have a very small width along the extra dimen-
sions, in order to prevent problems with the known phenomenol-
ogy [9].

However the assumption that the Standard Model particles are
initially trapped on the brane is not so obvious in this frame-
work. In this way, among the main issues approached in the brane
world context, is the problem of localization of several fields and
resonances in such branes. The importance of this subject comes
from the fact that, if indeed present, the extra dimensions will in-
evitably change our notion for the universe. The introduction of
extra dimensions affects both gravitational interactions and parti-
cle physics phenomenology, and leads to modifications in standard
cosmology. In this way, the investigation of field localization issue
can guide us to which kind of brane structure is more acceptable
phenomenologically [10], which makes interesting to look for an
alternative field theoretic localization mechanism in brane world
scenarios [11].

Several ideas and generalizations have been proposed in order
to approach this issue. Among these ideas, a smooth generaliza-
tion of the Randall–Sundrum scenario has been proposed in [12],
where five-dimensional gravity is coupled to scalar fields. This
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generalization gives rise to a new class of brane models, which
are now known as “thick branes”. (A detailed review in this sub-
ject may be found in Dzhunushaliev [13]. According to this author
the first work in the subject that we call “thick brane” today were
done by [14,15].) It has been shown that thick branes consist in a
more realistic model that the Randall–Sundrum one, since no sin-
gularities appear in this approach due to the form of the scalar
potential functions.

Along the years, new models have been proposed for such
branes with internal structures, constructed with one [16] or more
[17–19] scalar fields in a five-dimensional scenario. In these works,
thick brane models, gravitons and fermions, as well as gauge fields
can be localized on the brane. However, gauge fields are localized
only with the help of the dilaton field. The Kalb–Ramond field
localization in this scenario was also studied by [20]. There the
use of the dilaton was again necessary in order to localize of the
Kalb–Ramond field on the brane. On the other hand, other scenar-
ios have been proposed where thick brane solutions are extended
to space–times with dimension more than five [13]. Among these
works, we have some where branes are embedded in a bulk with
a string-like metric. The mainly motivation to study branes in the
presence of a string-like bulk comes from the fact that most of the
Standard Model fields are localized on a string-like defect. For ex-
ample, spin-0, spin-1, spin-2, spin-1/2 and spin-3/2 fields are all
localized on a string-like. Particularly, the bosonic fields are local-
ized with exponentially decreasing warp factor, and the fermionic
fields are localized on defect with increasing warp factor [11]. Even
more interesting is the fact that spin-1 vector [11], as well as the
Kalb–Ramond field [10], which are not localized on a domain wall,
in Randall–Sundrum model, can be localized in the string-like de-
fect.

However, most of the thick brane models in six-dimensional
scenarios, proposed so far, have been suffering from some draw-
backs. The first difficult is related with the introduction of scalar
fields as a matter-energy source in the equations. In this case it
is very difficult to find analytical solution to the scalar field, and
the warp-factor. Koley and Kar [21] have suggested a model where
analytical solutions can be found in a six-dimensional scenario,
however they run into a second difficult. This difficult is related
with the positivity of the components of the energy–momentum
tensor and has been found by other authors too [13,22,21]. Fi-
nally, problems with field localization were found at least in one
case [22].

In this work, we propose a model where a brane is made of
a scalar field with bounce-type configurations and embedded in a
bulk with a string-like metric. This model produces a sound AdS
scenario where none of the important physical quantities is infi-
nite. Among these quantities are the components of the energy–
momentum tensor, which have its positivity ensured by a suitable
choice of the bounce configurations. Another advantage of this
model is that the warp factor can be obtained analytically from
the equations of motion for the scalar field, obtaining as a result a
thick brane configuration, in a six-dimensional context. Moreover,
the study of the scalar field localization in this scenario is done.

This Letter is organized as follows. In Section 2, we introduce
a model where a bulk scalar field with bounce-type configurations
generates a brane which is embedded in a bulk with a string-like
metric. In Section 3, we investigate the possibility of field localiza-
tion in the scenario introduced in Section 2. Section 4 is devoted
to conclusions.

2. The model

In this section, we will introduce the basic ideas of this work.
In this way, we will construct a model where a bulk scalar field
with bounce-type configurations generates a brane which is em-
bedded in a bulk with a string-like metric. The use of bulk scalar
fields to generate branes was introduced by [23,24], and has been
largely studied in the literature [25–30]. In the six-dimensional
context, we highlight the work done by Koley and Kar [21], where
the brane is made of scalar fields and the authors found analyti-
cal “thin brane” solutions. In this work, the authors dealt with two
different models. In the first one, the presence of a bulk phan-
tom scalar field was supposed. In the second one, it was supposed
the presence of a bulk Brans–Dicke scalar field. Several progress
have been obtained in that work in the intend of construct brane
solutions in six dimensions, as well as, in the task of localize phys-
ical fields. Among these results, is the localization of massless spin
fields ranging from 0 to 2 on a single brane by means of gravity
only. Moreover, in this model, the sixth dimension seems to fa-
cilitate the localization of vectors fields, a result which does not
exist in five dimensions. However, some troubles with the energy
conditions (WEC, SEC, NEC) [31] were found. In the scenario in-
troduced by Koley and Kar, the energy–momentum tensor violates
all the energy conditions since its components are not positive de-
fined. Among the bad consequences of this, we have that the bulk
space–time obtained in that setup could be not dynamical stable.
The authors tried to release the violation of the energy conditions
saying that it also occurs in the Randall–Sundrum model [4], how-
ever the problem remains open.

In our work, we will try to overcome the problems with the
energy conditions by using a scalar field model with bounce-type
configurations in a string-like scenario. In the same way of the
model introduced by Koley and Kar, the model we will introduce
here has the advantages to be analytical. However, the introduction
of the bounce-type configurations to the scalar field that gener-
ates the brane will solve the problems with the energy conditions.
Moreover, as we will show, a sound scenario for field localization
is produced.

To begin with, we will assume a six-dimensional action for a
bulk scalar field in a potential V (φ) minimally coupled to gravity
in the presence of a cosmological constant:

S = 1

2κ2
6

∫
d6x

√
−(6)g

[
(R − 2Λ) + g AB∇Aφ∇Bφ − V (φ)

]
, (1)

where κ6 is the six-dimensional gravitational constant, and Λ is
the bulk cosmological constant.

The equations of motion obtained by variation of the action (1)
are

RMN − 1

2
gMN R = κ2

6

[
∂Mφ∂Nφ − gMN

(
1

2
(∂φ)2 + V (φ)

)]

− ΛgMN (2)

and

1√−(6)g
∂M

{√−(6)g gMN∂Nφ
} = ∂V

∂φ
. (3)

We have that, in the absence of gravity, for a scalar potential
of the double well type V (φ) = λ

4 (φ2 − v2)2, the scalar field equa-
tion possesses bounce-like statics solutions depending only on the
radial extra dimension, where the simplest of which is

φ(r) = v tanh(ar), (4)

with a2 ≡ λv2/2.
Now let us introduce the string-like metric

ds2 = gMN dxM dxN = gμν dxμ dxν + g̃ab dxa dxb

= e−A(r) ĝμν dxμ dxν + dr2 + e−B(r) dΩ2 , (5)
(5)
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Fig. 1. e−A(r) profile for β = 1; a = 1.

where M, N, . . . denote the six-dimensional space–time indices,
μ,ν, . . . the four-dimensional brane ones, and a,b, . . . denote the
2-extra spatial dimension ones.

From the equations above, we obtain the following field equa-
tions for the Einstein-scalar system:

e A(r) R̂ − 2A′(r)B ′(r) − 3
(

A′(r)
)2 = −2κ2

Dtr + 2Λ, (6)

e A(r) R̂ − 5A′(r)2 + 4A′′(r) = −2κ2
Dtθ + 2Λ, (7)

and

1

2
e A(r) R̂ + 3A′′(r) − 3

2
A′(r)B ′(r)

− 3
(

A′(r)
)2 + B ′′(r) − 1

2
B ′(r)2 = −2κ2

Dt0 + 2Λ, (8)

where ti (i = 0, r, θ ) are functions of r, and are given by the non-
vanish components of the energy–momentum tensor T MN (T μ

ν =
δ
μ
ν t0(r), T r

r = tr(r), T θ
θ = tθ (r)):

t0(r) = tθ (r) = −φ′2

2
+ V (φ), (9)

tr(r) = φ′2

2
+ V (φ). (10)

Note that with this form to the energy–momentum tensor, we
keep spherical symmetry.

In addition, the scalar curvature is given by

R = −5
(

A′(r)
)2 − 2A′(r)B ′(r) − 1

2

(
B ′(r)

)2

+ 4A′′(r) + B ′′(r). (11)

From now on, we will restrict us to the case where B(r) = A(r).
Then, integrating twice the sum of Eqs. (6) and (7), we obtain for
a scalar field given by Eq. (4), the metric exponent function (this
solution ensures A(0) = A′(0) = 0)

A(r) = β ln cosh(ar) + β

2
tanh2(ar) (12)

with β = 1
3 κ2

Dν2. A profile of the warp factor e−A(r) is given in
Fig. 1. This profile ensures the finiteness of the relation between
the four-(M p)- and six-(M6)-dimensional reduced Plank scale [32]

M2
p = 2π M4

6

∞∫
0

dr e−3/2A(r). (13)

In order to have a physically accepted scenario, it is necessary
that the energy–momentum components and the curvature scalar
Fig. 2. t0(r) = tθ (r) profile for v = −1 (filled line), and for v = 1 (dashed line).

Fig. 3. tr(r) profile for v = 1 (filled line), and for v = −1 (dashed line).

Fig. 4. R profile for β = 1; a = 0.5.

be finite. To analyze the behavior of these quantities, we have plot-
ted the components t0(r) = tθ (r), tr(r) of the energy–momentum
tensor, and the scalar curvature R in Figs. 2, 3, and 4, respectively.
The energy–momentum components depend only on the scalar
field derivative and the scalar field potential. The figures show that
the model proposed in this work produces a sound scenario where
none of these important quantities is infinite, and the positivity
of energy–momentum tensor components is ensured with a suit-
able choice of the scalar field constants. In other words, it is the
bounce-type configuration that ensures that the model is physi-
cally acceptable. Besides, as we can see, the curvature scalar profile
reveals an AdS scenario, since R is asymptotically negative.
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In this way, differently from the results found by Koley and Kar,
our energy density may be positive or negative on the brane de-
pending on the choice of the bounce configurations, in a way that,
the problems with energy conditions can be circumvented. More-
over, the warp factor that we found is equal to 1 at r = 0 which
ensures that on the brane one has a 4D Minkowski space–time.
Moreover, as r goes to zero or infinity, our warp factor goes to 0,
as can be seen in Fig. 1.

It is also interesting to point out the possibility to localize all
the standard model fields in this model. We know that in five
dimensions it is possible to localize chiral fermions in the “5D ver-
sion of this model” [12]. However, to localize vector field in this
set up, in five dimensions, we need to have a dilaton field present
in the model forming a “bounce–gravity–dilaton system” [12]. This
procedure is using to localize the Kalb–Ramond field that is not
localized only by means of gravity in this background [33]. In
six dimensions the situation changes and it is possible to local-
ize either the vector field [11,34] and the Kalb–Ramond field [35]
without the necessity of the dilaton field, in AdS Randall–Sundrum
model. In this same context the fermionic fields are localized [36].
We expect, in this way, to localize fields in this scenario that is
more realistic than the RS model ones, without the necessity of
the dilaton field. In this work, we will give the first step in this
analysis considering the scalar field.

3. Scalar field localization

The investigation of field localization issue can guide us to
which kind of brane structure is more acceptable phenomenologi-
cally [10]. The first natural step in the investigation on the possi-
bility to localize fields in any braneworld scenario is try to localize
the zero mode of a scalar field. In this way, in order to study the
localization of the scalar field in this context, we will begin with
the equations of motion for the scalar field in six dimensions

1√−g
∂M

(√−g gMN∂NΦ
) = 0. (14)

By separating the brane coordinates from the extra coordinates
ones, we simplify the equation above and get

e A(r)−B(r)/2ημν∂μ∂νΦ + ∂r
(
e−2A(r)−B(r)/2∂rΦ

)

+ e2A(r)−B(r)/2

R2
0

∂2
θ Φ = 0, (15)

where ημν is the metric of the quadri-dimensional Minkowski
space–time.

If we assume the following decomposition for the scalar field

Φ
(
xM) = φ

(
xμ

)∑
lm

χm(r)eilθ , (16)

we can separate the variables in Eq. (15). Then, by requiring that
ημν∂μ∂νφ = m2φ, we get the following equation for the radial
variable

e A(r)+B(r)/2∂r
[
e−2A(r)−B(r)/2∂rχ(r)

]

+
[

m2 − l2eB(r)−A(r)

R2
0

]
χ(r) = 0 (17)

or, yet

χ ′′(r) −
(

2A′(r) + B ′(r)
2

)
χ ′(r)

+
[

m2e A(r) − l2eB(r)

R2
0

]
χ(r) = 0, (18)

where the prime means the derivative with respect to r.
Fig. 5. V (r) profile for β = 2; a = 1.

To solve this equation, we proceed by changing both the depen-
dent and independent variables in order to obtain a Schrödinger
like equation. So if we assume z′(r) = e A(r)/2, we get

χ̈ (z) −
(

3 Ȧ(z)

2
+ Ḃ(z)

2

)
χ̇ (z)

+
[

m2 − l2eB(z)−A(z)

R2
0

]
χ(z) = 0, (19)

where the point means the derivative with respect to z.
If we take χ(z) = Ω(z)Ψ (z) with Ω(z) = Ω0e(3A(z)+B(z))/4,

where Ω0 is an integration constant, we will have

−d2Ψ (z)

dz2
+ V (z)Ψ (z) = m2Ψ (z), (20)

where

V (z) =
[

3 Ȧ(z) + Ḃ(z)

4

]2

−
[

3 Ä(z) + B̈(z)

4

]

+ l2

R2
0

eB(z)−A(z). (21)

In the case where A ≡ B , expression (19) is simplified to

χ̈ (z) − 2 Ȧ(z)χ̇ (z) +
[

m2 − l2

R2
0

]
χ(z) = 0. (22)

Moreover, the respective Schrödinger-like equation and poten-
tial are given by

−d2Ψ (z)

dz2
+ V (z)Ψ (z) = m2Ψ (z) (23)

with

V (z) = Ȧ(z)2 − Ä(z) + l2

R2
0

. (24)

In terms of the r derivatives, the potential (24) reads

V (r) = e−A(r)
[

3A′(r)2

2
− A′′(r)

]
+ l2

R2
0

. (25)

This is a volcano potential, as can be seen in Fig. 5. This kind of
potential is very common in the literature, in the context of brane
models and field localization, and it is important to ensure local-
ization.

Now, we will turn back to Eq. (18) to study the so-called zero
mode m = 0 and s-wave l = 0. In this case Eq. (18) is reduced to

χ ′′(r) −
(

2A′(r) + B ′(r))
χ ′(r) = 0. (26)
2
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This equation admits, as unique finite solution, the trivial solution
χ0 = constant. So we will place this solution in the scalar action

S = −1

2

∫
d6x

√−g gMN∂MΦ∂NΦ. (27)

For the case at hands, this action is given by

S0 = −1

2

∫
d6x R0e−A(r)−B(r)/2ημν∂μΦ0∂νΦ0. (28)

The interesting integral here is

I ∝
∞∫

0

dr e−A(r)−B(r)/2. (29)

The possibility of field localization is insured by the finiteness
of this integral. In this way, it is sufficient that A(r) + B(r)/2 > 0
(in the case where A(r) = B(r), we only need A(r) > 0) in order
to have zero mode localization for the scalar field. One easily can
see that the form (12) to A(r) obeys this condition. This result
shows that we have zero mode localization for the scalar field. It is
interesting to note that any non-gravitational trapping mechanism
has not been necessary to localize scalar field in this model, which
is an advantage when compared with results of Dzhunushaliev and
Folomeev [22].

4. Remarks and conclusions

We have constructed a model where a thick brane is generated
from a scalar field on a string-like defect. The model has simi-
lar characteristics to the one encountered by Dzhunushaliev and
Folomeev [22], but in our case we have the advantage that our
model has analytical solutions. The warp factor that we found is
equal to 1 at r = 0. It ensures that we have 4D Minkowski space–
time on the brane. As r goes to zero or infinity our warp factor
goes to 0, as can be seen in Fig. 1.

Differently from the results found in Ref. [22] our energy den-
sity may be positive or negative on the brane and is asymptotically
zero when r goes to zero or infinity, as the warp factor. The nega-
tivity of the energy density may be used to explain the formation
of the brane where the repulsion from the negative energy density
can balance the attraction from gravity. Additionally the energy
density was derived from a scalar field and it was possible to find
an analytical solution to the warp factor.

Another work where scalar fields were used to construct brane
in six dimensions was done by Koley and Kar [21]. The au-
thors found analytical “thin brane” solutions to the warp fac-
tor from scalar fields. However some problems with the energy
conditions were found. Our solution, in contrast, is an AdS type
solution which presents an energy density that may be nega-
tive, zero or positive depending on the choice of the bounce
configurations. It prevents our model from problems with the
energy conditions (WEC, SEC, NEC) [31] that is encountered in
Ref. [21].
Moreover, in the context of braneworld it is suitable to inves-
tigate if a model is able to localize fields, in general. In order to
analyze if our solution enables field localization, we studied the
zero mode scalar field localization. Our results show that we have
zero mode localization for the scalar field. It is interesting to note
that any non-gravitational trapping mechanism has not been nec-
essary to localize scalar field in this model which is an advantage
when compared with [22]. In future works we will study the lo-
calization of other fields in this context.
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