4 research outputs found

    Electro-Absorbers: A Comparison on Their Performance with Jet-Absorbers and Absorption Columns

    Get PDF
    This work focuses on the removal of perchloroethylene (PCE) from gaseous streams using absorbers connected with electrolyzers. Two types of absorption devices (jet absorber and absorption column) were compared. In addition, it has been evaluated the different by-products generated when a simultaneous electrolysis with diamond anodes is carried out. PCE was not mineralized, but it was transformed into phosgene that mainly derivates into carbon tetrachloride. Trichloroacetic acid was also formed, but in much lower amounts. Results showed a more efficient absorption of PCE in the packed column, which it is associated to the higher gas–liquid contact surface. Jet absorber seems to favor the production of carbon tetrachloride in gaseous phase, whereas the packed column promotes a higher concentration of trichloroacetic acid in liquid. It was also evaluated the scale up of the electrolytic stage of these electro-absorption devices by using a stack with five perforated electrode packages instead of a single cell. Clarification of the effect of the applied current density on the speciation attained after the electrolysis of the absorbent has been attempted. Experiments reveal similar results in terms of PCE removal and a reduced generation of gaseous intermediates at lower current densities

    Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes

    No full text
    This work describes the treatment of soil polluted with the herbicide pendimethalin by the combination of surfactant-aided soil-washing (SASW) and electrochemical advanced oxidation processes. Results show that it is possible to completely extract the herbicide from soil using SDS (sodium dodecyl sulfate) solutions as soil washing fluid (SWF) and ratios SWF/soil higher than 10 dm3 kg−1. Soil washing effluents obtained after the application of the SASW consisted of a mixture of surfactant (high concentration) and pesticide (low concentration) and their degradation by electrolysis, photo-assisted electrolysis (photoelectrolysis) and sonoelectrolysis with diamond anodes has been compared with that obtained by the application of single photolysis and sonolysis. Opposite to photolysis and sonolysis, the different electrolytic techniques allow decreasing the concentration of herbicide and surfactant in the effluents. Competition between the surfactant and the herbicide oxidation is important and irradiation of high-frequency ultrasound or UV light do not seem to outperform very importantly the results obtained by single electrolysis in the effluents of the SASW obtained with low SDS/soil ratios. Opposite, photoelectrolysis becomes the most efficient technology for the treatment of SWF obtained at high SDS/soil ratios (those required for an efficient SASW). Catalytic effect of the sulfate released during the degradation of SDS (in particular the formation of sulfate radicals) can help to explain the differences observed. The removal efficiency is higher during sonoelectrolysis, reaching a final removal of the pesticide after 8 h of treatment of 86.22%. Photoelectrolysis (57.59%) shows higher efficiencies for the removal of SDS followed by sonoelectrolysis (52.64%) and, finally, electrolysis (48.29%), after 8 h of treatment
    corecore