6 research outputs found

    Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses

    Get PDF
    The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.Peer Reviewe

    Refining the evolutionary tree of the horse Y chromosome

    Get PDF
    The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity

    Biodiversity of Arabian horses in Syria

    Get PDF
    Das Hauptziel der Untersuchung der Artenvielfalt syrischer Araber war die Identifizierung der Populationsstruktur in einer Reihe von syrischen Araberpferden, die die drei Hauptstämme Saglawi, Kahlawi und Hamdani repräsentieren. Für die Studie wurden molekulare Marker der Sequenzdaten der 353 bp der hypervariablen Region der mitochondrialen D-Schleife, sowie der Daten von 12 Pferde-Mikrosatelliten und 38.671 genomweite SNPs verwendet. Kenntnisse über die Variabilität der Ausdauer sowie über morphologische Eigenschaften sind in Zuchtprogrammen von Vorteil. Wir haben in einer genomweiten Assoziationsstudie (GWAS) getestet, ob es einen kausalen Zusammenhang zwischen morphologischen Merkmalen und Variabilität der Ausdauer mit genetischen Polymorphismen gibt.Darüber hinaus haben wir Kandidatengene näher charakterisiert, welche zu dem komplexen Merkmal der Ausdauerleistung beitragen könnten.The major objective of studying the biodiversity of Syrian Arabian horses was to identify the population structure in a set of Syrian Arabian horses representing the three major strains Saglawi, Kahlawi, and Hamdani. For the study, we used different genetic markers. The variability of endurance and morphological traits are beneficial in breeding programs. We tested genome-wide associations (GWAS) to find a causal relationship between morphological traits and genetic variants. Furthermore, we used the candidate gene approach to investigate the variability of genes contributing to endurance performance

    Investigation of Cerebellar Abiotrophy (CA), Lavender Foal Syndrome (LFS), and Severe Combined Immunodeficiency (SCID) Variants in a Cohort of Three MENA Region Horse Breeds

    No full text
    Genetic disorders in horses are mostly fatal or usually cause significant economic losses for breeders and owners. Here we studied a total of 177 Arabian, Barb and Arab-Barb horses from the Middle East and North Africa (MENA) using Sanger Sequencing and PCR-ACRS (polymerase chain reaction—artificially created restriction site) approaches to examine the genetic disorders in the studied horse breeds. We identified the genetic variations related to Cerebellar Abiotrophy (CA), Severe Combined Immunodeficiency (SCID) occurrence, and the studied population was free of the mutant allele determined Lavender Foal Syndrome (LFS). Overall, presented data showed that 15 of the studied horses are carriers of two genetic disorders; the investigated horse population showed that five Arabian horses were heterozygous for the CA-associated SNP (rs397160943). The SCID-deletion TCTCA within PRKDC was detected in ten horses (nine Arabian horses and one Arab-Barb horse). This investigation shows the importance of testing these breeds for genetic disorders to avoid further spread of deleterious variant

    Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses

    No full text
    The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds

    Refining the evolutionary tree of the horse Y chromosome

    No full text
    The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski\u27s horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity
    corecore