48 research outputs found
Two-dimensional projected-momentum covariance mapping for coulomb explosion imaging
We introduce projected-momentum covariance mapping, an extension of recoil-frame covariance mapping for 2D ion imaging studies. By considering the two-dimensional projection of the ion momenta as recorded by the detector, one opens the door to a complex suite of analysis tools adapted from three-dimensional momentum imaging studies. This includes the use of different frames of reference to unravel the dynamics of fragmentation and the application of fragment momentum constraints to isolate specific fragmentation channels. The technique is demonstrated on data from a two-dimensional ion imaging study of the Coulomb explosion of the cis and trans isomers of 1,2-dichloroethene, following strong-field ionization by an intense near-infrared femtosecond laser pulse. Classical simulations are used to guide the interpretation of projected-momentum covariance maps. The results offer a detailed insight into the distinct Coulomb explosion dynamics for this pair of isomers and lay the groundwork for future time-resolved studies of photoisomerization dynamics in this molecular system
Recommended from our members
Time-resolved site-selective imaging of predissociation and charge transfer dynamics: The CH3I B-band
The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the U
Characterizing the multi-dimensional reaction dynamics of dihalomethanes using XUV-induced Coulomb explosion imaging
Site-selective probing of iodine 4d orbitals at 13.1Â nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5Â nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom
Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis
Using covariance analysis methods, we study the fragmentation dynamics of multiply ionized 1- and 2-iodopropane. Signatures of isomer-specific nuclear motion occurring during sequential fragmentation pathways are identified.</jats:p
Direct momentum imaging of charge transfer following site-selective ionization
We study ultrafast charge rearrangement in dissociating 2-iodopropane (2âC3H7I) using site-selective core ionization at the iodine atom. Clear signatures of electron transfer between the neutral propyl fragment and multiply charged iodine ions are observed in the recorded delay-dependent ion momentum distributions. The detected charge-transfer pathway is only favorable within a small (few angstroms), charge-state-dependent spatial window located at C-I distances longer than that of the neutral ground-state molecule. These results offer insights into the physics underpinning charge transfer in isolated molecules and pave the way for a different class of time-resolved studies
Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging
The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pumpâprobe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.</p
Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (âŒ12 ions shotâ1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.</p
Direct momentum imaging of charge transfer following site-selective ionization
We study ultrafast charge rearrangement in dissociating 2-iodopropane (2-C3H7I) using site-selective core-ionization at the iodine atom. Clear signatures of electron transfer between the neutral propyl fragment and multiply charged iodine ions are observed in the recorded delay-dependent ion momentum distributions. The detected charge transfer pathway is only favorable within a small (few angstrom), charge-state-dependent spatial window located at C-I distances longer than that of the neutral ground-state molecule. These results offer new insights into the physics underpinning charge transfer in isolated molecules and pave the way for a new class of time-resolved studies
Exploring the ultrafast and isomer-dependent photodissociation of iodothiophenes via site-selective ionization
CâI bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival âdirectâ and âindirectâ dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ⌠1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) Ïâ â Ï and (C-I bond localized) Ïâ â (n/Ï) excitation in the respective parent isomers