11 research outputs found

    Quantum well engineering in InGaN/GaN core-shell nanorod structures

    Get PDF
    We report the ability to control relative InN incorporation in InGaN/GaN quantum wells (QWs) grown on the semi-polar and non-polar facets of a core-shell nanorod LED structure by varying the growth conditions. A study of the cathodoluminescence emitted from series of structures with different growth temperatures and pressures for the InGaN QW layer revealed that increasing the growth pressure had the effect of increasing InN incorporation on the semi-polar facets, while increasing the growth temperature improves the uniformity of light emission from the QWs on the non-polar facets.</p

    A calibrated UV-LED based light source for water purification and characterisation of photocatalysis

    Get PDF
    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m-2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.</p

    Waveguide integrated GaN distributed Bragg reflector cavity using low-cost nanolithography

    Get PDF
    This work presents the design, fabrication and measurement of gallium nitride (GaN) distributed Bragg reflector cavities integrated with input and output grating couplers. The devices are fabricated using a new, low-cost nanolithography technique: displacement Talbot lithography combined with direct laser writing lithography. The finite-difference time-domain method has been used to design all the components and measured and modelled results show good agreement. Such devices have applications in GaN integrated photonics and biosensing.</p

    Quantum well engineering in InGaN/GaN core-shell nanorod structures

    Get PDF
    We report the ability to control relative InN incorporation in InGaN/GaN quantum wells (QWs) grown on the semi-polar and non-polar facets of a core-shell nanorod LED structure by varying the growth conditions. A study of the cathodoluminescence emitted from series of structures with different growth temperatures and pressures for the InGaN QW layer revealed that increasing the growth pressure had the effect of increasing InN incorporation on the semi-polar facets, while increasing the growth temperature improves the uniformity of light emission from the QWs on the non-polar facets

    A calibrated UV-LED based light source for water purification and characterisation of photocatalysis

    Get PDF
    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m-2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.</p

    Waveguide integrated GaN distributed Bragg reflector cavity using low-cost nanolithography

    Get PDF
    This work presents the design, fabrication and measurement of gallium nitride (GaN) distributed Bragg reflector cavities integrated with input and output grating couplers. The devices are fabricated using a new, low-cost nanolithography technique: displacement Talbot lithography combined with direct laser writing lithography. The finite-difference time-domain method has been used to design all the components and measured and modelled results show good agreement. Such devices have applications in GaN integrated photonics and biosensing
    corecore