741 research outputs found

    Gender-specific effects of HIV protease inhibitors on body mass in mice

    Get PDF
    Protease inhibitors, as part of highly active anti-retroviral therapy (HAART), have significantly increased the lifespan of human immunodeficiency virus (HIV) infected patients. Several deleterious side effects including dyslipidemia and lipodystrophy, however, have been observed with HAART. Women are at a higher risk of developing adipose tissue alterations and these alterations have different characteristics as compared to men. We have previously demonstrated that in mice the HIV protease inhibitor, ritonavir, caused a reduction in weight gain in females, but had no effect on male mice. In the present study, we examined the potential causes of this difference in weight gain. Low-density lipoprotein receptor (LDL-R) null mice or wild-type C57BL/6 mice, were administered 15 mug/ml ritonavir or vehicle (0.01% ethanol) in the drinking water for 6 weeks. The percent of total body weight gained during the treatment period was measured and confirmed that female LDL-R gained significantly less weight with ritonavir treatment than males. In wild type mice, however, there was no effect of ritonavir treatment in either sex. Despite the weight loss in LDL-R null mice, ritonavir increased food intake, but no difference was observed in gonadal fat weight. Serum leptin levels were significantly lower in females. Ritonavir further suppressed leptin levels in (p \u3c 0.05). Ritonavir did not alter serum adiponectin levels in either gender. To determine the source of these differences, female mice were ovariectomized remove the gonadal sex hormones. Ovariectomy prevented the weight loss induced by ritonavir (p \u3c 0.05). Furthermore, leptin levels were no longer suppressed by ritonavir (p \u3c 0.05). This study demonstrates that gonadal factors in females influence the hormonal control of weight gain changes induced by HIV protease inhibitors in an environment of elevated cholesterol

    Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium

    Get PDF
    Introduction The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery. Materials and Methods All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores. Results Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p’s < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen’s d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes. Conclusion The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels

    Antecedents of chronic lung disease following three patterns of early respiratory disease in preterm infants

    Get PDF
    The incidence of chronic lung disease (CLD) varies among groups defined by their early pattern of respiratory disease. Although CLD is common among infants with continuous exposure to increased ambient oxygen throughout the first two postnatal weeks the antecedents of CLD among preterm infants without this exposure are not well understood

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Patterns of Respiratory Disease During the First 2 Postnatal Weeks in Extremely Premature Infants

    Get PDF
    Pulmonary disease among infants of <28 weeks' gestation (extremely low gestational age newborns) often has the following pattern: the infant starts out with little need for supplemental oxygen and ventilatory support in the first postnatal week but then has pulmonary deterioration in the second postnatal week, with an increased need for supplemental oxygen and respiratory support. We evaluated the antecedents and correlates of patterns of early lung disease, with particular emphasis on pulmonary deterioration, in a large cohort study (the Extremely Low Gestational Age Newborn [ELGAN] study)

    Diet Complexity and Estrogen Receptor β Status Affect the Composition of the Murine Intestinal Microbiota

    Get PDF
    ABSTRACT Intestinal microbial dysbiosis contributes to the dysmetabolism of luminal factors, including steroid hormones (sterones) that affect the development of chronic gastrointestinal inflammation and the incidence of sterone-responsive cancers of the breast, prostate, and colon. Little is known, however, about the role of specific host sterone nucleoreceptors, including estrogen receptor β (ERβ), in microbiota maintenance. Herein, we test the hypothesis that ERβ status affects microbiota composition and determine if such compositionally distinct microbiota respond differently to changes in diet complexity that favor Proteobacteria enrichment. To this end, conventionally raised female ERβ +/+ and ERβ −/− C57BL/6J mice (mean age of 27 weeks) were initially reared on 8604, a complex diet containing estrogenic isoflavones, and then fed AIN-76, an isoflavone-free semisynthetic diet, for 2 weeks. 16S rRNA gene surveys revealed that the fecal microbiota of 8604-fed mice and AIN-76-fed mice differed, as expected. The relative diversity of Proteobacteria , especially the Alphaproteobacteria and Gammaproteobacteria , increased significantly following the transition to AIN-76. Distinct patterns for beneficial Lactobacillales were exclusive to and highly abundant among 8604-fed mice, whereas several Proteobacteria were exclusive to AIN-76-fed mice. Interestingly, representative orders of the phyla Proteobacteria , Bacteroidetes , and Firmicutes , including the Lactobacillales , also differed as a function of murine ERβ status. Overall, these interactions suggest that sterone nucleoreceptor status and diet complexity may play important roles in microbiota maintenance. Furthermore, we envision that this model for gastrointestinal dysbiosis may be used to identify novel probiotics, prebiotics, nutritional strategies, and pharmaceuticals for the prevention and resolution of Proteobacteria -rich dysbiosis

    Chronic Lung Disease and Developmental Delay at 2 Years of Age in Children Born Before 28 Weeks' Gestation

    Get PDF
    Extremely low gestational age newborns (ELGANs) are at increased risk of chronic lung disease (CLD) and of developmental delay. Some studies have suggested that CLD contributes to developmental delay

    Cranial Ultrasound Lesions in the NICU Predict Cerebral Palsy at Age 2 Years in Children Born at Extremely Low Gestational Age

    Get PDF
    Our prospective cohort study of extremely low gestational age newborns evaluated the association of neonatal head ultrasound abnormalities with cerebral palsy at age 2 years. Cranial ultrasounds in 1053 infants were read with respect to intraventricular hemorrhage, ventriculomegaly, and echolucency, by multiple sonologists. Standardized neurological examinations classified cerebral palsy, and functional impairment was assessed. Forty-four percent with ventriculomegaly and 52% with echolucency developed cerebral palsy. Compared with no ultrasound abnormalities, children with echolucency were 24 times more likely to have quadriparesis and 29 times more likely to have hemiparesis. Children with ventriculomegaly were 17 times more likely to have quadriparesis or hemiparesis. Forty-three percent of children with cerebral palsy had normal head ultrasound. Focal white matter damage (echolucency) and diffuse damage (late ventriculomegaly) are associated with a high probability of cerebral palsy, especially quadriparesis. Nearly half the cerebral palsy identified at 2 years is not preceded by a neonatal brain ultrasound abnormality. Originally published Journal of Child Neurology, Vol. 24, No. 1, Jan 200

    Fetal Growth Restriction and Chronic Lung Disease Among Infants Born Before the 28th Week of Gestation

    Get PDF
    Improvement in survival of extremely premature infants over the past several decades has resulted in an increase in the number infants with chronic lung disease (CLD). Historical neonatal exposures associated with CLD now less frequently precede the disease. There is now increasing interest in exposures and events before delivery that predict CLD. The objective of this study was to identify current antenatal predictors of CLD

    Early postnatal hypotension is not associated with indicators of white matter damage or cerebral palsy in extremely low gestational age newborns

    Get PDF
    ObjectivesTo evaluate, in extremely low gestational age newborns (ELGANs), relationships between indicators of early postnatal hypotension and cranial ultrasound indicators of cerebral white matter damage imaged in the nursery and cerebral palsy diagnoses at 24 month follow-up.MethodsThe 1041 infants in this prospective study were born at < 28 weeks gestation, were assessed for 3 indicators of hypotension in the first 24 postnatal hours, had at least one set of protocol cranial ultrasound scans, and were evaluated with a structured neurologic exam at 24 months corrected age. Indicators of hypotension included: 1) lowest mean arterial pressure (MAP) in the lowest quartile for gestational age; 2) treatment with a vasopressor; and 3) blood pressure lability, defined as the upper quartile of the difference between each infant’s lowest and highest MAP. Outcomes included indicators of cerebral white matter damage, i.e. moderate/severe ventriculomegaly or an echolucent lesion on cranial ultrasound, and cerebral palsy diagnoses at 24 months gestation. Logistic regression was used to evaluate relationships among hypotension indicators and outcomes, adjusting for potential confounders.ResultsTwenty-one percent of surviving infants had a lowest blood pressure in the lowest quartile for gestational age, 24% were treated with vasopressors, and 24% had labile blood pressure. Among infants with these hypotension indicators, 10% percent developed ventriculomegaly and 7% developed an echolucent lesion. At 24-months follow-up, 6% had developed quadriparesis, 4% diparesis, and 2% hemiparesis. After adjusting for confounders, we found no association between indicators of hypotension, and indicators of cerebral white matter damage or a cerebral palsy diagnosis.ConclusionsThe absence of an association between indicators of hypotension and cerebral white matter damage and or cerebral palsy suggests that early hypotension may not be important in the pathogenesis of brain injury in ELGANs
    • …
    corecore