3 research outputs found
Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium
Introduction
The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery.
Materials and Methods
All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores.
Results
Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p’s < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen’s d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes.
Conclusion
The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels
The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study
Background
The etiology of hamstring strain injury (HSI) in American football is multi-factorial and understanding these risk factors is paramount to developing predictive models and guiding prevention and rehabilitation strategies. Many player-games are lost due to the lack of a clear understanding of risk factors and the absence of effective methods to minimize re-injury. This paper describes the protocol that will be followed to develop the HAMstring InjuRy (HAMIR) index risk prediction models for HSI and re-injury based on morphological, architectural, biomechanical and clinical factors in National Collegiate Athletic Association Division I collegiate football players.
Methods
A 3-year, prospective study will be conducted involving collegiate football student-athletes at four institutions. Enrolled participants will complete preseason assessments of eccentric hamstring strength, on-field sprinting biomechanics and muscle–tendon volumes using magnetic-resonance imaging (MRI). Athletic trainers will monitor injuries and exposure for the duration of the study. Participants who sustain an HSI will undergo a clinical assessment at the time of injury along with MRI examinations. Following completion of structured rehabilitation and return to unrestricted sport participation, clinical assessments, MRI examinations and sprinting biomechanics will be repeated. Injury recurrence will be monitored through a 6-month follow-up period. HAMIR index prediction models for index HSI injury and re-injury will be constructed.
Discussion
The most appropriate strategies for reducing risk of HSI are likely multi-factorial and depend on risk factors unique to each athlete. This study will be the largest-of-its-kind (1200 player-years) to gather detailed information on index and recurrent HSI, and will be the first study to simultaneously investigate the effect of morphological, biomechanical and clinical variables on risk of HSI in collegiate football athletes. The quantitative HAMIR index will be formulated to identify an athlete’s propensity for HSI, and more importantly, identify targets for injury mitigation, thereby reducing the global burden of HSI in high-level American football players.
Trial Registration The trial is prospectively registered on ClinicalTrials.gov (NCT05343052; April 22, 2022)
Concussion-Recovery Trajectories Among Tactical Athletes: Results From the CARE Consortium.
CONTEXT: Assessments of the duration of concussion recovery have primarily been limited to sport-related concussions and male contact sports. Furthermore, whereas durations of symptoms and return-to-activity (RTA) protocols encompass total recovery, the trajectory of each duration has not been examined separately.
OBJECTIVE: To identify individual (eg, demographics, medical history), initial concussion injury (eg, symptoms), and external (eg, site) factors associated with symptom duration and RTA-protocol duration after concussion.
DESIGN: Cohort study.
SETTING: Three US military service academies.
PATIENTS OR OTHER PARTICIPANTS: A total of 10 604 cadets at participating US military service academies enrolled in the study and completed a baseline evaluation and up to 5 postinjury evaluations. A total of 726 cadets (451 men, 275 women) sustained concussions during the study period.
MAIN OUTCOME MEASURE(S): Number of days from injury (1) until the participant became asymptomatic and (2) to complete the RTA protocol.
RESULTS: Varsity athlete cadets took less time than nonvarsity cadets to become asymptomatic (hazard ratio [HR] = 1.75, 95% confidence interval = 1.38, 2.23). Cadets who reported less symptom severity on the Sport Concussion Assessment Tool, third edition (SCAT3), within 48 hours of concussion had 1.45 to 3.77 times shorter symptom-recovery durations than those with more symptom severity. Similar to symptom duration, varsity status was associated with a shorter RTA-protocol duration (HR = 1.74, 95% confidence interval = 1.34, 2.25), and less symptom severity on the SCAT3 was associated with a shorter RTA-protocol duration (HR range = 1.31 to 1.47). The academy that the cadet attended was associated with the RTA-protocol duration (P \u3c .05).
CONCLUSIONS: The initial total number of symptoms reported and varsity athlete status were strongly associated with symptom and RTA-protocol durations. These findings suggested that external (varsity status and academy) and injury (symptom burden) factors influenced the time until RTA