7 research outputs found

    BCLA CLEAR Presbyopia: Management with corneal techniques

    Get PDF
    Corneal techniques for enhancing near and intermediate vision to correct presbyopia include surgical and contact lens treatment modalities. Broad approaches used independently or in combination include correcting one eye for distant and the other for near or intermediate vision, (termed monovision or mini-monovision depending on the degree of anisometropia) and/or extending the eye's depth of focus [1]. This report provides an overview of the evidence for the treatment profile, safety, and efficacy of the range of corneal techniques currently available for managing presbyopia. The visual needs and expectations of the patient, their ocular characteristics, and prior history of surgery are critical considerations for patient selection and preoperative evaluation. Contraindications to refractive surgery include unstable refraction, corneal abnormalities, inadequate corneal thickness for the proposed ablation depth, ocular and systemic co-morbidities, uncontrolled mental health issues and unrealistic patient expectations. Laser refractive options for monovision include surface/stromal ablation techniques and keratorefractive lenticule extraction. Alteration of spherical aberration and multifocal ablation profiles are the primary means for increasing ocular depth of focus, using surface and non-surface laser refractive techniques. Corneal inlays use either small aperture optics to increase depth of field or modify the anterior corneal curvature to induce corneal multifocality. Presbyopia correction by conductive keratoplasty involves application of radiofrequency energy to the mid-peripheral corneal stroma which leads to mid-peripheral corneal shrinkage, inducing central corneal steepening. Hyperopic orthokeratology lens fitting can induce spherical aberration and correct some level of presbyopia. Postoperative management, and consideration of potential complications, varies according to technique applied and the time to restore corneal stability, but a minimum of 3 months of follow-up is recommended after corneal refractive procedures. Ongoing follow-up is important in orthokeratology and longer-term follow-up may be required in the event of late complications following corneal inlay surgery

    Visual fields in patients who have undergone vitrectomy for complications of diabetic retinopathy. A prospective study

    Get PDF
    BACKROUND: To determine the extent of visual field loss in patients who had required a pars plana vitrectomy secondary to complications of proliferative diabetic retinopathy. METHODS: Patients that had undergone a vitrectomy on at least one eye for treatment of either vitreous haemorrhage or tractional retinal detachment were selected for study. ETDRS acuity and Humphrey binocular Esterman visual field testing were performed and compared to the minimum standards for safe driving as defined by the Royal College of Ophthalmologists in 1999. In addition to this Goldman kinetic visual fields using a III4e and V4e stimulus size and central 24-2 threshold test with the SITA-fast strategy were performed on the vitrectomised eye. RESULTS: 20 patients (n = 20) were recruited. Mean visual acuity in the eye being tested was 0.20 (Snellen 6/9.5). Results from the Humphrey field analyzer showed a mean number of abnormal stimulus locations of 71.2% (p < 0.005). 70% of patients had sufficient binocular acuity to drive and of these 71.4% were shown not to have a minimum visual field for safe driving on binocular Esterman field analysis. CONCLUSION: Vitrectomy potentially allows retention/restoration of good visual acuity in patients with complications of proliferative diabetic retinopathy. However patients may be suffering from unrecognized visual impairment consequent upon extensive visual field loss which in over two thirds of patients may be sufficiently severe to preclude safe driving
    corecore