5 research outputs found

    Cardiovascular and metabolic health is associated with functional brain connectivity in middle-aged and older adults: Results from the Human Connectome Project-Aging study

    Get PDF
    Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer\u27s disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity

    Associations between age, sex, APOE genotype, and regional vascular physiology in typically aging adults

    Get PDF
    Altered blood flow in the human brain is characteristic of typical aging. However, numerous factors contribute to inter-individual variation in patterns of blood flow throughout the lifespan. To better understand the mechanisms behind such variation, we studied how sex and APOE genotype, a primary genetic risk factor for Alzheimer's disease (AD), influence associations between age and brain perfusion measures. We conducted a cross-sectional study of 562 participants from the Human Connectome Project - Aging (36 to >90 years of age). We found widespread associations between age and vascular parameters, where increasing age was associated with regional decreases in cerebral blood flow (CBF) and increases in arterial transit time (ATT). When grouped by sex and APOE genotype, interactions between group and age demonstrated that females had relatively greater CBF and lower ATT compared to males. Females carrying the APOE ε4 allele showed the strongest association between CBF decline and ATT incline with age. This demonstrates that sex and genetic risk for AD modulate age-associated patterns of cerebral perfusion measures

    Dissimilatory Fe(III) and Mn(IV) reduction

    No full text

    Gene Polymorphisms and Signaling Defects

    No full text
    corecore