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a b s t r a c t 

Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated 
with altered neural and cognitive health as well as increased risk of dementia and Alzheimer’s disease in later 
life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk 
factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) 
across a broad adult age-span (36–90 + years) from 930 volunteers in the Human Connectome Project Aging 
(HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with 
especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, 
at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as 
dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan 
impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may 
disrupt higher-order network integrity. 

1. Introduction 

Abnormalities in cardiovascular and metabolic (CVM) status in 
adulthood are associated with greater cognitive decline and risk for de- 
mentia due to Alzheimer’s disease and related disorders (including cere- 
brovascular, Lewy body and frontotemporal dementia diseases) in later 
life ( Chakrabarti et al., 2015 ; Duron and Hanon, 2008 ; Luchsinger and 
Mayeux, 2004 ; Sahathevan et al., 2012 ) . Such CVM abnormalities, re- 
flected in diverse physiological malfunctions such as dyslipidemia and 
insulin resistance, being overweight or obese, hypertension, and inflam- 
mation, commonly travel together, albeit to varying degrees among in- 
dividuals. Because of their coincidence and interactions, it is useful to 
consider these abnormalities together. Various terms and definitions 

∗ Corresponding authors. 
E-mail addresses: brashid@mgh.harvard.edu (B. Rashid), dsalat@mgh.harvard.edu (D.H. Salat), searnold@mgh.harvard.edu (S.E. Arnold) . 

for clusters of CVM factors have been described, e.g., metabolic syn- 
drome, dysmetabolic syndrome, syndrome X and insulin resistance syn- 
drome ( Eckel et al., 2005 ; Groop and Orho ‐Melander, 2001 ; Rao, 2001 ; 
Reaven, 2004 ; Timar et al., 2000 ). 

There are many gaps in knowledge about how these complex and in- 
teractive CVM factors contribute to cognitive decline and Alzheimer’s 
disease and related disorders in later life. It is unknown whether 
CVM factors affect the brain only when parameters are clinically ab- 
normal (e.g., hypertension or diabetes diagnosis as defined by clin- 
ical criteria) in later life when Alzheimer’s disease and related dis- 
orders emerge or whether any atypy in subclinical CVM physiol- 
ogy might affect brain function over the lifespan. It is possible 
that CVM abnormalities in midlife lead to cumulative neural effects, 
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increasing vulnerability and accelerating cognitive decline in later 
life. 

While the mechanisms linking CVM status to cognitive impairment 
and dementia in later life are not yet clear, their effects may be due 
to various factors. CVM-associated cerebrovascular disease may pro- 
duce low level chronic ischemia and blood brain barrier dysfunction. 
Systemic and blood-borne lipid and oxidative biochemicals may pro- 
mote protein misfolding of amyloid, tau and other Alzheimer’s disease 
and related disorders’ pathologies. High circulating levels of insulin or 
other diabetes-associated factors may induce a state of insulin resis- 
tance in the brain ( Arnold et al., 2018 ) and CVM-associated immune 
dysregulation and “inflammaging ” may affect the brain’s ability to clear 
Alzheimer’s disease and related disorders’ pathologies and otherwise af- 
fect synaptic and neuronal survival and plasticity. For example, mis- 
folded 𝛼-synuclein protein ( M Ashraf et al., 2014 ) pathologies via is- 
chemia may have deleterious effects on the cerebrovascular neural sys- 
tems subserving cognition, thus decreasing the reserve or resilience ca- 
pacity of the brain to withstand various stresses to the system. Since 
these risk factors (RFs) rarely occur in isolation ( Luchsinger et al., 2005 ), 
the combined effects of the RFs on aging and diseases should be fully 
examined. Studies have suggested that exposure to cardiometabolic RFs 
in mid-life and younger-old life further increases the risk for dementia 
in late-life ( Malik et al., 2021 ; Whitmer et al., 2005 ), although mini- 
mal to no associations between RFs and dementia risk were reported 
in the oldest old population (i.e., 85 + years ( Beydoun et al., 2008 ; 
Harrison et al., 2015 )). Moreover, since dementia-related pathologies 
may begin to accumulate decades before the onset of clinical symptoms 
( Jack Jr et al., 2013 ), understanding how these cardiometabolic RFs 
impact brain integrity should aid in elucidating the underlying neuro- 
physiology of cardiometabolic-related late-life dementia risk. 

CVM factors have previously been associated with gray and 
white matter changes ( Coutinho et al., 2017 ; Friedman et al., 2014 ; 
Leritz et al., 2011 ; Rao, 2001 ; Ryu et al., 2017 ; Salat et al., 2012 ; 
Williams et al., 2013 ). These studies additionally demonstrate that sub- 

clinical variation in CVM status (e.g., variation in blood pressure) is as- 
sociated with cognitive changes in older adults. In other words, clini- 
cally defined ‘risk’ states (e.g., hypertension) are not necessary to see 
an impact on neural health. However, functional brain alterations asso- 
ciated with CVM status across the age-span are yet to be fully under- 
stood. In addition, while the relationship between isolated RFs and neu- 
ral integrity have been previously examined ( Kim and Feldman, 2015 ; 
Park et al., 2018 ), little is known about how the shared contribution 
of cumulative RFs disrupts the functional organization and temporal 
dependency (i.e., covariation or correlation between functional activa- 
tions over time) across brain regions. A better understanding of the as- 
sociation between co-occurring CVM factors and functional brain in- 
tegrity across the lifespan may inform early detection and intervention, 
particularly since many of these are modifiable ( Blazer et al., 2015 ; 
Livingston et al., 2017 ; Qiu and Fratiglioni, 2015 ). 

Here, we used cross-sectional functional magnetic resonance imag- 
ing across the adult lifespan in the Human Connectome Project in Ag- 
ing ( Bookheimer et al., 2019 ; Harms et al., 2018 ) (HCP-A) to elucidate 
the role of CVM factors on brain health, particularly cortical and sub- 
cortical brain functional connectivity (FC). We used a surface-based cor- 
tical parcellation ( Glasser et al., 2016 ; Ji et al., 2019 ) developed with 
multimodal neuroimaging data in order to relate any effects to well- 
defined, functionally relevant regions. We aimed to answer two primary 
questions: 1 ) How is CMV health associated with whole-brain functional 

connectivity? ; and 2) How does cumulative CVM risk affect the network- 

level functional connectivity? . To do so, we estimated the associations be- 
tween CVM factors and whole-brain FC and further implemented a novel 
quantitative connectivity metric and visualization framework that high- 
lights cumulative CVM-related disruption within each cortical area or 
subcortical structure relative to all other cortical areas or subcortical 
structures. We explored the ‘ strengthening’ and ‘ weakening’ associations 
of CVM factors. In this context, we refer to ’strengthening’ and ’weak- 

Table 1 

Demographic information and participant characteristics. 

Participants ( N = 930) 

Age Mean ± SD: 61.6 ± 16 
Range: 36 - 90 + years 
Below 65 years: 59% 

65 + years:41% 

Sex Female: 55.6% 

Race Caucasian: 72.8% 

African American: 13.44% 

Asian: 6.34% 

More than one: 4.4% 

Native American: less than 1% 

Unknown or not reported: 2.8% 

Ethnicity Hispanic or Latino: 10.97% 

Not Hispanic or Latino: 87.74% 

Unknown or not reported: 1.29% 

ening’ in terms of how the CVM measures covary with the correlation 
value (e.g., increased metabolic risk is associated with a weakening of 
the correlation); however, this terminology is not used here as an index 
of functional integrity. Additionally, we explored CVM associations with 
between-network FC measures. We hypothesized that elevated CVM fac- 
tors would be associated with overall dysregulated FC patterns, and that 
these weakening association patterns would be evident at the network- 
level. 

2. Materials and methods 

2.1. Participants 

The Human Connectome Project in Aging (HCP-A) study has re- 
cruited over 1200 healthy adults aged 36 to 90 + years old across four 
acquisition sites using matched MRI scanning protocols as well as cen- 
tralized data analysis pipelines ( Bookheimer et al., 2019 ; Harms et al., 
2018 ). All participants in the HCP-A study exhibited typical health for 
their age without stroke, clinical dementia, or other identified causes of 
cognitive decline. Of these 1200 healthy participants, the current study 
processed and analyzed all 930 individuals for whom their multi-modal 
neuroimaging data including resting fMRI neuroimaging was currently 
available and had passed quality control. The study was approved and 
monitored by the Institutional Review Board. All participants provided 
informed, written consent for this Institutional Review Board-approved 
study. After obtaining written consent, the Montreal Cognitive Assess- 
ment (MoCA) ( Nasreddine et al., 2005 ) was administered, and partic- 
ipants meeting the determined normal threshold for their age bracket 
were considered eligible for the study. No participants were excluded 
based on medication use, although self-reported medication use was 
recorded during the study visit in order to investigate or avoid specific 
medication confounds. Essential health assessments for HCP-A study in- 
clude measurements of vital signs, and blood laboratory tests including 
complete blood counts, metabolic, lipid and endocrine panels, vascular 
health/burden factors, genetic testing for Alzheimer’s disease risk, go- 
nadal hormones, and health and other environmental factors that are 
known to show associations to brain circuitry during typical aging, as 
well as in dementia and other diseases ( Iturria-Medina and Evans, 2015 ), 
as previously described ( Bookheimer et al., 2019 ). 

Data from participants aged 90 + years were lumped together while 
reporting due to privacy concerns. Additional details on the inclusion 
and exclusion criteria for HCP-A can be found in a previous publication 
( Bookheimer et al., 2019 ). Table 1 presents the demographic informa- 
tion of the participants processed and analyzed for the current study. 

2.2. CVM health assessment 

A composite index of CVM health factors or “CVMI ” of averaged 
z-transformed measures was calculated from 12 available variables, 
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each of which have been established to increase risk for, or correlate 
with CVM status ( Ahn et al., 2017 ; Chien et al., 2017 ; Ettehad et al., 
2016 ; Koliaki et al., 2019 ; Kubota et al., 2017 ; Levin et al., 2001 ; 
Sandesara et al., 2019 ; Skaaby et al., 2017 ; Sozen and Ozer, 2017 ; 
Vasan et al., 2001 ; Wang et al., 2017 ). These encompassed: cardiac- 
autonomic (heart rate, heart rate variability), vascular (blood pres- 
sure [systolic and diastolic] adjusted for medication, creatinine clear- 
ance), metabolic (BMI, hemoglobin A1c, total LDL and HDL choles- 
terols, triglycerides, and vitamin D), and immune (C-reactive protein 
[CRP], albumin) systems. For participants who were taking blood pres- 
sure medication, the raw blood pressure values were adjusted by adding 
10 points, prior to z-scoring and averaging the measures ( Law et al., 
2003a ; Wald et al., 2009 ). Similarly, measures of hemoglobin A1c 
( Sherifali et al., 2010 ) and cholesterol ( Law et al., 2003b ; Weir and 
Moser, 2000 ) were adjusted for medication by following existing ap- 
proaches from the literature. Higher values of CVMI indicate poorer cu- 
mulative CVM status, even within the subclinical range for disease for 
any individual measure. 

To fully eliminate the shared variance between age and CVMI, we in- 
corporated a more stringent approach for the regression analyses by first 
orthogonalizing CVMI with respect to age prior to using it as a regres- 
sor in the models. The orthogonalized CVMI measures were obtained 
using the Gram-Schmidt process ( Björck, 1994 ; Gerstorfer et al., 2023 ; 
Omidikia and Kompany-Zareh, 2013 ) to produce uncorrelated variables 
by removing the projection of age from CVMI. 

Figure S1 presents additional information on the orthogonalization 
of CVMI with age. Moreover, Figure S2 highlights the Pearson’s corre- 
lation between measures used for the CVMI estimation, and Table S1 

presents the Group-wise mean, standard deviation (SD) and range (min- 
imum, min; maximum, max) for each age group, as well as the Cohen’s 
D effect size and p-values highlighting the group difference in the vari- 
ables used for CVMI estimation. 

2.3. Image acquisition 

Structural MRI images were acquired across sites using a 3.0 
Tesla Prisma scanner (Siemens; Erlangen, Germany) utilizing a 32- 
channel head coil. T1-weighted imaging was performed using multi- 
echo MPRAGE ( van der Kouwe et al., 2008 ) at 0.8 mm isotropic res- 
olution with TR = 2500 ms, TI = 1000 ms, TE = 1.8/3.6/5.4/7.2 ms, 
and flip angle = 8 deg. T2-weighted imaging was performed using SPACE 
( Mugler et al., 2000 ) at 0.8 mm isotropic resolution with TR = 3200 ms 
and TE = 564 ms. Both sequences used embedded volumetric naviga- 
tors for prospective motion correction and selective reacquisition of the 
lines in k-space corrupted by motion ( Hess et al., 2011 ). As explained 
( Elam et al., 2021 ), the mean image of just the first two echoes from the 
MPRAGE acquisition was used as the input to subsequent processing. 

The resting-state functional MRI (fMRI) scans were acquired 
with a 2D multiband (MB) gradient-recalled echo (GRE) echo- 
planar imaging (EPI) sequence (eight-fold slice acceleration [MB8], 
TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic voxels 
covering the whole brain. fMRI scans were acquired in pairs of two 
runs, with opposite phase encoding polarity (anterior-to-posterior [AP] 
and posterior-to-anterior [PA]) so that the fMRI data in aggregate is 
not biased toward a particular phase encoding polarity. Each run of the 
resting-state fMRI scans was 6.5 min in length. Matched, phase encod- 
ing direction reversed spin echo images were also obtained for distor- 
tion correction. During the scan, participants viewed a small white fix- 
ation crosshair on a black background. Participants were instructed to 
stay still, stay awake, and blink normally while looking at the fixation 
crosshair. 

2.4. Imaging data preprocessing 

The HCP-A structural and functional data were analyzed using an 
HCP-Style approach ( Glasser et al., 2016 ) to maximize the spatial lo- 

calization of high-resolution functional signals ( Coalson et al., 2018 ). 
The data were processed using the publicly released HCP minimal pre- 
processing pipelines ( Glasser et al., 2013 ; Smith et al., 2013 ), as well as 
pipelines for cross-subject registration ( Robinson et al., 2014 ), and fMRI 
denoising ( Glasser et al., 2018 , 2019 ). These methods are described in 
detail in the cited publications; in brief: All structural and functional 
images were corrected for distortions, including gradient nonlinear- 
ity distortions and b0 distortions in the EPI images ( Andersson et al., 
2003 ). All images were aligned within and across modalities to account 
for subject head motion, with cross-modal alignment being performed 
using boundary-based registration ( Greve and Fischl, 2009 ). Cortical 
surface meshes and subcortical structure segmentations were recon- 
structed and performed using FreeSurfer version 6.0 ( Fischl, 2012 ). All 
datasets were converted to NIFTI, GIFTI, and CIFTI file formats to aid 
in cross-software compatibility. All data were aligned to MNI space in 
the volume using FNIRT ( Andersson et al., 2007 ) and initially on the 
cortical surface using a gentle folding-based registration (‘MSMSulc’ 
( Robinson et al., 2018 )). Spatially specific artifacts (e.g., from subject 
head motion, vascular physiology, or the MRI scanner) were removed 
from each subject’s fMRI using multi-run spatial ICA + FIX with lin- 
ear detrending and without movement regressors ( Glasser et al., 2018 , 
2019 ). Cortical “areal-feature-based ” cross-subject alignment was per- 
formed using ‘MSMAll’ registration with T1w/T2w myelin maps, rest- 
ing state networks, and resting state visuotopy driving the alignment 
( Robinson et al., 2018 ), which removes most but not all cross-subject 
variability in cortical areas ( Glasser et al., 2016 ). Global artifacts (e.g., 
from subject respiration) were removed from each subject’s fMRI with 
temporal ICA ( Glasser et al., 2018 , 2019 ) using weighted regression 
( Glasser et al., 2016 ) of a previously computed (on HCP ‘Young Adult’ 
data) combined spatial ICA and temporal ICA decomposition onto the 
HCA data (as native temporal ICA has not yet been run on the HCA data 
( Lamichhane et al., 2021 )). Resting state fMRI timeseries were concate- 
nated across runs after demeaning and normalization of unstructured 
noise variance and averaged within 180 atlas-defined cortical areas per 
cerebral hemisphere ( Glasser et al., 2016 ) and 16 FreeSurfer subcortical 
structures ( Fischl et al., 2002 ) to reduce the effects of random noise. 

2.5. Resting-state functional connectivity modeling 

As the optimal approach for modeling functional connectivity that 
best corresponds to invasive (tracer-based) measures of anatomical con- 
nectivity is not yet known ( Hayashi et al., 2021 ), we choose a stan- 
dard approach. Functional connectivity was modeled using “full ” Pear- 
son correlation with a Fisher z transformation. Thus, a FC matrix for N 

regions is defined as the N x N matrix M, where M(i,j) contains the full 
correlation of the time courses between region i and region j. In this 
way, a 376 ×376 FC matrix was formed for each subject. The cortical 
areas were also grouped using a pre-defined assignment to one of 12 
functional networks ( Ji et al., 2019 ) and connectivity values were aver- 
aged within and between networks for some analyses. The 12 functional 
networks included primary visual (VIS1), secondary visual (VIS2), au- 
ditory (AUD), somatomotor (SMN), cingulo-opercular (CON), default- 
mode (DMN), dorsal attention (DAN), frontoparietal (FPN), language 
(LAN), posterior multimodal (pMM), ventral multimodal (vMM), and 
orbito-affective (OA) networks. 

2.5.1. Analysis of CVMI and age associations with functional connectivity 

To understand how CVMI is associated with FC measures, we ex- 
plored 2 separate linear regression models: whole-brain ROI-to-ROI and 
between-network models. 

2.5.2. Whole-brain ROI degrees 

To evaluate the associations between whole-brain, pairwise ROI-to- 
ROI FC and clinical/demographic covariates, we developed a simplified 
‘ROI degree’ estimation scheme that would allow us to examine CVMI- 
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Table 2 

Criteria to determine strengthening or weakening association. 

Strengthening Association Mean-FC ROI = ‘ + ’ ve Mean-FC ROI = ‘-’ ve 
Effect ROI = ‘ + ’ ve Effect ROI = ‘-’ ve 

Weakening Association Mean-FC ROI = ‘ + ’ ve Mean-FC ROI = ‘-’ ve 
Effect ROI = ‘-’ ve Effect ROI = ‘ + ’ ve 

and age-related associations at a global (whole-brain) level and also pro- 
viding a novel metric of the degree of ‘disruption’ for each individual 
region relative to all other regions. For each of 376 ×375/2 = 70,500 
pairs of ROIs, we fit the following three linear regression models: 

⎧ 
⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑴 𝒐 𝒅 𝒆 𝒍 𝑪 𝑽 𝑴 𝑰 
1 ∶ 𝐹 𝐶 ≈ 𝜷0 + 𝜷1 × 𝐶𝑉 𝑀𝐼 

𝑴 𝒐 𝒅 𝒆 𝒍 
𝑨 𝒈 𝒆 

2 ∶ 𝐹 𝐶 ≈ 𝜷0 + 𝜷1 × 𝐴𝑔𝑒 

𝑴 𝒐 𝒅 𝒆 𝒍 
𝑪 𝑽 𝑴 𝑰 + 𝑨 𝒈 𝒆 
3 ∶ 𝐹 𝐶 ≈ 𝜷0 + 𝜷1 × 𝐶𝑉 𝑀𝐼 + 𝜷2 × 𝐴𝑔𝑒 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 3 𝑎. 𝐶𝑉 𝑀𝐼 − 𝑎𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 − 𝑓𝑜𝑟 − 𝑎𝑔𝑒 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 3 𝑏. 𝐴𝑔𝑒 − 𝑎𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 − 𝑓𝑜𝑟 − 𝐶𝑉 𝑀𝐼 

Note that, for Model 3, as indicated by the Inferences 3a and 3b , we 
used both CVMI and age as regressors (independent variables), estimat- 
ing the (i) CVMI effect adjusted for age, and (ii) age effect adjusted for 
CVMI. 

After thresholding the CVMI regression coefficients at each edge 
(pair of cortical areas) at p < 0.05 (uncorrected), the degree (i.e., each 
uncorrected p < 0.05 association was assigned a value of 1, and their sum 

reflects the degree or the total number of edges per region) of each ROI 
was used as a test statistic to summarize the strength of FC 

–CVMI as- 
sociations. Additionally, we divided the significant CVMI associations 
into “strengthening ” and “weakening ” associations. If both association 
and underlying FC of the ROI had the same ‘sign/direction’, that is, if an 
association was positive (or negative) and the underlying FC was also 
positive (or negative), then we defined it as a strengthening association. 
Associations and FC measures showing opposite sign/direction were de- 
noted as weakening associations. The relationships between association 
and FC measures presented in Table 2 were considered when identifying 
whether it’s an “strengthening ” or “weakening ” association. 

Finally, a permutation test (see section 5.7) was implemented 
and was corrected for multiple comparisons using both false discov- 
ery rate (FDR; Benjamini and Hochberg procedure ( Benjamini and 
Hochberg, 1995 )) and family-wise error rate (FWER; Hochberg- 
Bonferroni procedure ( Hochberg, 1988 ; Holland and Copen- 
haver, 1987 )), leading to final estimates of strengthening and weakening 
association degrees per ROI. Figure S3 provides an illustration of the 
methodological pipeline for the “whole-brain ROI degrees ” estimation. 
Moreover, a detailed description of the strengthening and weakening 
association estimation is provided in supplementary section S2 and 
Figures S4 and S5. 

2.5.3. Z-scoring of ROI degrees 

To remove the effect of chance, we further estimated the z-values of 
each ROI weakening degree using the following equation. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 

= 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑊 𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝐷𝑒𝑔𝑟𝑒𝑒 − 𝑀𝑒𝑎𝑛 ( 𝑃 𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑊 𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 ) 
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷 𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ( 𝑃 𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑊 𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝐷 𝑒𝑔𝑟𝑒𝑒𝑠 ) 

Here, for each ROI, the actual weakening degree is obtained as de- 
scribed in the previous section. For each ROI, the mean and standard 
deviation of the permutation weakening degrees were computed using 
the null distribution of that ROI resulted from the permutation test. The 
resulting z-scores indicate how likely or unlikely the ROI degrees are to 
occur under chance. Higher z-score value suggests that the underlying 
ROI degree is more unlikely under chance, while lower z-score value 
highlights that the ROI degree is more likely to occur due to chance. 

2.5.4. Whole-brain FC and CVMI association 

In addition to ROI degree estimation, to understand how CVMI im- 
pacts the raw FC scores, we have also explored the associations between 
the full FC matrix and age-adjusted CVMI (orthogonalized to age). The 
full FC matrix contains 360 cortical areas, which were modularized 
into underlying 12 brain networks for better visualization. Figure S6 

(c) presents the uncorrected, FDR-corrected, and FWER-corrected re- 
sults for the associations between full FC matrix and CVMI. Also, CVMI- 
adjusted (CVMI orthogonalized to age) age effects on full FC matrix are 
presented in Figure S6 (d). 

The proportion of CVMI effects within the cortical and subcortical 
networks are also highlighted in Table S2, showing the percentage of 
CVMI- (age-adjusted) and age- (CVMI-adjusted) effects across the net- 
works. For each network, the proportion of effect was computed using 
the following equation: 

Proportion of Effect = 

number of ROIs pairs affected within a network 

Total number of ROIs pairs within a network 

× 100% 

2.5.5. Network-level degrees 

In addition to the whole-brain association models, we further as- 
sessed CVMI associations with between-network FC, after adjusting for 
age. The FC measures were first modularized into specific brain net- 
works. To examine the associations between orthogonalized CVMI and 
modularized network FC, we first applied the following linear regres- 
sion model on the FC between all ROIs within each pair of networks, 
adjusting for age-effect. 

{ Model 
CVMI − adjusted − for − Age 

1 ∶𝐹 𝐶 

pairwise − network ≈ 𝛽0 + 𝛽1 × CVMI + 𝛽2 ×Age 

For instance, to estimate the effect of CVMI on the FC between the 
DMN and CON networks, we estimated the effect of CVMI on the FC 

between all ROIs within the DMN network and all ROIs within the CON 

network. Similar to the whole-brain ROI degree approach, we separated 
the network-level associations as strengthening and weakening. Here, 
we only report the weakening associations at the network-level as most 
of the network-level associations were weakening associations ( ∼98%). 
We defined the network-level degrees as the total number of connections 
(i.e., ROIs or nodes) between a pair of networks showing CVMI weak- 
ening associations, after accounting for age and correcting for multiple 
comparisons using FWER at p < 0.05. 

2.6. Permutation testing 

We used Manly’s method ( Manly, 1986 ; Winkler et al., 2014 ) 
to obtain permutation-based parameter estimates and construct a 
reference distribution, and applied FDR correction using Benjamini 
and Hochberg procedure (at 𝛼-level = 0.05, two-sided) ( Benjamini and 
Hochberg, 1995 ) and FWER correction using Hochberg-Bonferroni pro- 
cedure (at 𝛼-level = 0.05, two-sided) for multiple comparison testing 
( Hochberg, 1988 ; Holland and Copenhaver, 1987 ). 

To evaluate the statistical significance of the association, we used 
a permutation testing procedure to first create a null distribution of 
the measure that quantifies the association ( Figure S7 ). The random- 
ization performed to construct the null distribution was done for each 
pair of ROIs separately. Briefly, for each ROI, we held the connectivity 
measures constant and shuffled the rows of the independent variable 
(e.g., CVMI, age) to break the linkage of the participants’ brain features 
and demographic/clinical features. Then, we performed linear regres- 
sion analysis using the same dependent and independent (but shuffled) 
variables to generate a null distribution of the measure that quantifies 
the association (i.e., ROI degrees for whole-brain regression model) af- 
ter permuting the input data 1000 times ( N ). The p permutation value was 
estimated as the number of null ‘quantifying measure of interest’ (i.e., 
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Fig. 1. Association between CVMI and whole-brain FC . (a) 
FWER-corrected (at 𝛼-level = 0.05) CVMI-related weakening as- 
sociation degrees after adjusting for age. (b) FWER-corrected 
(at 𝛼-level = 0.05) CVMI-related z-scores of weakening associa- 
tion degrees after adjusting for age. CVMI measures were or- 
thogonalized to age prior to the regression analyses. Results 
are depicted on inflated cortical surfaces and separated into 
left and right hemispheres. The color bar for ROI degree in- 
dicates: light green = greater weakening association degrees 
and darker blue = lesser weakening association degrees. Color 
bar reflects sum of degrees associated with an ROI (permuta- 
tion test; FWER-corrected at 𝛼-level = 0.05). The color bar for 
z-scored degree indicates: light green = ROI degree is less likely 
to occur under chance and darker blue = ROI degree is more 
likely to occur under chance. Color bar reflects z-scores as- 
sociated with an ROI, computed by subtracting the mean of 
that ROI null distribution from actual ROI weakening degree, 
and then dividing it by the standard deviation of the null dis- 
tribution (permutation test; FWER-corrected at 𝛼-level = 0.05). 
Each of the ROIs is outlined on the labeled surface maps based 
on the HCP’s multi-modal cortical parcellation as presented in 
Figure S13 . Bar plots showing association between CVMI and 

whole-brain FC weakening degrees in the subcortical regions are provided in Figure S9. Figure S10 presents the FDR-corrected results of the association between 
CVMI and whole-brain FC. 

null ROI degrees ( 𝜔 

∗ ) for whole-brain model) that exceeded the ob- 
served measures (i.e., ROI degrees [ 𝜔 ] ) estimated on the original, un- 
shuffled dataset. Correction for multiple comparisons (across ROIs) was 
then done on p permutation values using FDR and FWER correction ( 𝛼- 
level = 0.05, two-sided) unless otherwise stated. 

𝐖𝐡𝐨𝐥𝐞 − 𝐛𝐫𝐚𝐢𝐧 𝐦𝐨𝐝𝐞𝐥 ∶ 𝐩 𝐩𝐞𝐫 𝐦𝐮𝐭 𝐚𝐭 𝐢𝐨𝐧 = 

1 + 

∑𝑁 

𝑖 =1 
1 , 𝑖𝑓 𝜔 

∗ 
𝑖 

≥ 𝜔 

0 , 𝑖𝑓 𝜔 

∗ 
𝑖 

< 𝜔 

1 + 𝑁 

Figure S8 provides an example of the shuffled independent variable 
(CVMI, orthogonalized to age) during a run of the permutation test. 

2.7. Data availability 

The Lifespan Human Connectome Project (HCP) consortia for HCP- 
Aging have done the Lifespan 2.0 Release of imaging and behavioral 
data on the NIMH Data Archive (NDA), which included cross-sectional 
visit 1 preprocessed structural and functional imaging data, unprocessed 
visit 1 imaging data for all included modalities (structural and resting 
state fMRI), and non-imaging demographic and behavioral assessment 
data from 725 HCP-Aging (HCP-A, ages 36–100 + ). Additional partici- 
pants’ data utilized in this work will be publicly available at the next 
phase of data release. 

3. Results 

3.1. CVM factors are associated with whole-brain FC across the adult 

lifespan 

We first examined how a composite index of CVM factors ( “CVMI ”) 
encompassing heart rate and heart rate variability, systolic and dias- 
tolic blood pressures, kidney function using creatinine clearance, body 
mass index (BMI), glycemia (hemoglobin A1c), lipids (total LDL and 
HDL cholesterols) and inflammation (C-reactive protein or CRP) asso- 
ciated with whole-brain functional connectivity (FC) as measured with 
BOLD fMRI at rest (see Methods for details). We separated the ‘strength- 
ening’ and ‘weakening’ associations of the CVMI on FC, and then es- 
timated the sum of each cortical area’s strengthening and weakening 
associations, defined as those with a statistically significant association 
between FC and CVMI. 98.33% of all significant associations between 
connectivity and CVMI were weakening associations. Because nearly all 
significant associations were ’weakening’ associations, we henceforth fo- 
cus on ’weakening’ associations only. Fig. 1 presents the total number of 

connections (i.e., sum of areas’ degrees) across each area that exhibited a 
decrease in whole-brain FC (positive and negative correlations closer to 
zero) with increasing CVMI after adjusting for age; Figure S9 shows bar 
charts for the analogous results for subcortical ROIs. Note that, all weak- 
ening degrees (both cortical and subcortical) represent associations with 
the whole brain (i.e., 360 cortical areas across both hemispheres, and 
16 subcortical areas). Associations with CVMI were especially promi- 
nent in insular, lateral somato-motor, medial frontal, medial parietal, 
lateral occipital, superior temporal and temporal pole, and inferior lat- 
eral fronto-parietal regions. Although age adjustment reduced the over- 
all effects measured, strong regional associations remained even after 
this adjustment. 

Importantly, the patterns in Fig. 1 show strong bilateral symmetry, 
with a correlation between left and right hemisphere values of 0.83 in 
Fig. 1a . Also, several areas stand out as having notably more weaken- 
ing association degrees than their neighbors ( Figs. 1 and S10 ). These 
include areas FEF and PEF in frontal cortex, area PFop in lateral pari- 
etal cortex, area V6 in occipital cortex, and areas d32, p32pr, and a24pr 
of medial prefrontal and cingulate cortex. Area STSdp is one of the few 

with a pronounced asymmetry (relatively higher weakening association 
degrees on the right but not the left). 

3.2. Between-network weakening associations 

In addition to whole-brain associations, we also examined the 
network-level CVMI associations. Fig. 2 shows the heatmaps for mean FC 

between the brain networks and their CVMI associations, after adjusting 
for age (FWER-corrected, p < 0.05). As evident from Fig. 2 , network-level 
FC measures between core brain networks showed greater weakening 
associations with CVMI, for example between the DMN and CON, as 
well as DMN and DAN, suggesting that integration among higher-level 
functional brain networks are significantly weakened due to increased 
CVMI. 

3.3. Age- and sex-associations 

We examined the age- and sex-related associations with FC measures, 
with and without adjusting for CVMI association. Figure S11 presents 
the association between age and whole-brain. Note that age-related asso- 
ciations show regional overlap with CVMI associations, suggesting that 
these overlapping regions might be generally vulnerable. The associa- 
tions between CVMI and whole-brain FC in male and female participants 
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Fig. 2. Association between CVMI and network-level FC . (a) The 12-network HCP multimodal parcellation showing color-coded brain networks ( Ji et al., 2019 ). 
(b) Heatmap of mean FC (i.e., correlation) between brain networks are shown. Color bar for mean FC indicate: dark red = greater correlation and dark blue = greater 
anti-correlation between brain networks color-coded according to the multimodal parcellation as shown in (a). (c) The FWER-corrected heatmaps for age-adjusted 
CVMI-related associations between brain networks. The color bar for CVMI- and age-related associations represents Network Degree and indicates: light blue = greater 
weakening network degree and dark blue = lesser weakening network degree. CVMI measures were orthogonalized to age prior to the regression analyses. VIS1: 
primary visual; VIS2: secondary visual, AUD: auditory; SMN: somatomotor; CON: cingulo-opercular; DMN: default-mode; DAN: dorsal attention; FPN: frontoparietal; 
LAN: language; PMM: posterior multimodal; VMM: ventral multimodal; and ORA: orbito-affective networks. 

(also with age-adjustment) are presented in Figure S12(a, b). The weak- 
ening degrees for association between CVMI and whole-brain FC exhib- 
ited similar patterns in males and females on average. Moreover, Figure 

S12(c) highlights the weakening degrees from the association between 
CVMI and whole-brain FC, after adjusting for both age and sex, exhibit- 
ing a similar spatial weakening pattern as seen in Fig. 1 . 

4. Discussion 

We examined the associations of a composite index of cardiovascu- 
lar, metabolic, and inflammatory factors that confer risk for dementia 
in later life with whole-brain and regional FC across the adult lifespan 
in generally healthy volunteers with normal cognition. We found that 
increased CVMI index scores, irrespective of any particular clinical CVM 

diagnoses (e.g., hypertension, hyperlipidemia, diabetes) are associated 
with reduced FC globally and regionally, emphasizing the importance 
of even subclinical inter-individual variation. Of particular interest, this 
effect was strongest among younger and middle-aged adults and was 
still significant, albeit less strong in the older adults. 

Traditionally, the effects of age or other variables of interest on 
whole-brain FC are analyzed and evaluated only on the raw FC scores 
and visualized as heatmaps ( Vaidya et al., 2019 ) (or connectograms 
( Zhang et al., 2017 ) depending on the number of significant connec- 
tions). However, while this standard approach provides important pat- 
terns of disrupted connectivity, it does not provide how each brain re- 
gion is affected in a straightforward manner (i.e., is there a set of regions 
that are more affected than others?). Further, the standard effect estima- 
tion using FC measures does not account for strengthening or weakening 
effects. Rather, it estimates whether it is a positive or negative effect. To 
more thoroughly understand the results from the standard approach, the 
mean FC needs to be taken into consideration as the effect of the variable 
of interest could have four outcomes: (i) the mean FC is positive and the 
effect is positive; (ii) the mean FC is negative and the effect is negative; 
(iii) the mean FC is positive and the effect is negative; and (iv) the mean 
FC is negative and the effect is positive. This complexity is highlighted 
in Figure S6, where we present the heatmaps of age and CVMI effects on 
full FC scores. Our proposed strengthening/weakening approach takes 
this into account by computing the effects as strengthening or weaken- 

ing and summarizes these effects across individual ROI. The weakening 
degree estimation highlights how much an ROI is affected by the vari- 
able of interest (i.e., age or CVMI). Our surface map representation of 
the ROI degrees further simplifies the visualization and interpretation 
of such complex matrix, and highlights hub-like region that are most 
impacted by CVMI. 

Our findings revealed widespread associations between CVMI and 
FC throughout the brain, particularly highlighting weakened FC pat- 
terns with increased level of CVMI. These findings are consistent with 
previous studies demonstrating brain alteration in the context of one or 
more cardiovascular and metabolic risk factor diagnoses. For example, 
in a recent study examining 42 patients with type-2 diabetes, Cui et al. 
(2015) reported reduced DMN connectivity, which was also associated 
with worse performance on tasks of memory and executive functioning. 
Also, Park et al. (2018) reported disrupted frontoparietal network FC 

based on degree centrality values from 274 individuals with abdominal 
obesity. In 27 patients with metabolic syndrome (i.e., clustering of 3 or 
more diagnoses), Rashid et al. identified disrupted FC among the DMN, 
DAN, ECN and several other brain region ( Rashid et al., 2019 , 2021 ). 
Another study by Xia et al. (2015) revealed associations between Type 
2 diabetes mellitus and reduced attentional state across the dorsal and 
ventral attention networks. Further, Cui et al. (2016) determined associ- 
ation between occipital hypoconnectivity and impaired visual memory 
and executive function performance in 40 patients with diabetes. Using 
graph-theory analysis, Baek et al. (2017) reported altered network topo- 
logical structures in obesity in both whole-brain network and regional 
levels. However, except for our previous work ( Rashid et al., 2019 , 
2021 ), these studies did not investigate the diverse and highly inter- 
active CVM factors that collectively are thought to interact and impact 
brain function and lead to vulnerability to cognitive decline. While CVM 

factors may individually impact the cerebrovascular system to differ- 
ing degrees (i.e., blood pressure impacting more than others), they are 
mechanistically so intertwined that individual contributions are difficult 
to disaggregate. Here, we demonstrate a simple composite of multiple 
co-occurring CVM physiological factors are associated with widespread 
alterations in brain FC. While recent studies on the associations between 
post-traumatic stress disorder ( Jagger-Rickels et al., 2021 ) (PTSD) and 
suicide attempt ( Stumps et al., 2021 ), and brain FC have presented simi- 
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lar quantification of hyper- and hypo-connectivity measures, the current 
work has extended the FC estimation into ‘ strengthening’ and ‘weakening’ 

estimations along with a novel visualization framework that highlights 
cumulative CVM-related disruption. 

As shown in the previous studies, exposure to cardiovascular risk fac- 
tors during mid-life are-associated with cognitive decline and dementia 
risks in old-age ( Debette et al., 2011 ; Lamar et al., 2020 ), with minimal 
to no associations suggested between these risk factors and dementia 
risk in the oldest old population ( Beydoun et al., 2008 ; Harrison et al., 
2015 ). Our preliminary findings on age-stratified group-level associa- 
tions (supplementary section S3 ), imply that brain alterations due to 
these classic RFs may occur even earlier than previously reported, em- 
phasizing the importance of recognizing CVM factors early to allowing 
the greatest opportunity for dietary, lifestyle or medical interventions to 
preserve FC, maximize cerebral reserve and resilience, and prevent com- 
mon neurocognitive disorders of aging. However, further investigation 
is required to fully understand the CVM-related associations at different 
ages. 

Our network-level findings further confirm and expand on prior ev- 
idence of CVM-related disruptions in brain FC by demonstrating that 
the higher-order brain networks that are vital to everyday cognitive 
function, including DMN, DAN, and CON, have altered FC among them- 
selves, as well as with other brain networks as CVM factors increase. Pre- 
viously, the domains of executive function and attention that are espe- 
cially important for higher order cognitive processing (e.g., reasoning, 
planning and cognitive flexibility), have been associated with different 
CVM risk factors in isolation ( Bucur and Madden, 2010 ; Gorelick et al., 
2012 ; Leritz et al., 2016 ; Vincent and Hall, 2015 ). Further, a recent 
study showed that the FC measures across multiple networks (DMN, 
DAN, VIS and SM) are disrupted more globally in patients with a di- 
agnosis of metabolic syndrome, whereas the FC measures across oth- 
ers (ECN, VAN and LIMBIC) exhibit more localized alteration patterns 
( Rashid et al., 2021 ). Interestingly, our present findings demonstrate a 
global alteration in network-level FC with CVMI across most of the core 
networks, including DMN, DAN, FPN, VIS and SM. 

At the whole-brain level, the CVMI associations exhibit greater pri- 
mary sensory and motor involvement which is thought to be less vulner- 
able to neurodegenerative disease processes (e.g., Alzheimer’s disease) 
( Resnick et al., 2003 ; Thompson et al., 2001 ) and reduced DMN involve- 
ment, deviating from the expected pattern of brain regions typically 
showing “aging ” effects. However, when we examined DMN at the seed- 
level (results are not shown), more CVMI associations were observed. 
This general pattern observed at the whole-brain level has alternatively 
been associated with traveling waves of arousal ( Raut et al., 2021 ) and 
respiration ( Lynch et al., 2020 ), though perfusion effects of respiration 
were removed from this data and it was hypothesized that less healthy 
individuals would have stronger apparent "connectivity" due to respira- 
tion, not weaker as we see here. 

The mechanistic basis for the associations between CVMI and FC 

is uncertain. One obvious possibility is that an increased association 
between CVMI and FC for a given pair of parcels or networks reflects 
stronger anatomical connectivity that would be evident if tracer-based 
methods were feasible in humans. Because this is only one of many plau- 
sible explanations, we have avoided using the terms ‘connectivity’ and 
‘connections’ in describing our FC measures even though these terms 
are widely used. Alternative explanations for altered FC include diverse 
direct and/or downstream physical and biochemical effects of CVM fac- 
tors on a) cerebrovascular functioning, b) neuronal and glial function- 
ing and/or c) promotion of neurodegenerative disease pathologies, ulti- 
mately leading to impaired neurosynaptic functioning. Atherosclerosis, 
lipohyalinosis, endothelial dysfunction and disruption of the blood brain 
barrier can be mechanistically linked to all of the CVM factors included 
in our composite index ( Berenson et al., 1998 ; Dessein et al., 2005 ; 
Knoflach et al., 2009 ; Kovacic and Fuster, 2012 ). Associated changes 
in cerebral blood flow (CBF) would disrupt resting state signals within 

and across functional networks throughout the brain. Indeed, a previous 
study had linked advancing Alzheimer’s disease and stage and reduced 
CBF in the temporal and parietal region ( Binnewijzend et al., 2016 ), in- 
dicating regional overlap with our current findings highlighting greater 
‘whole-brain’ weakening degrees across these regions due to CVMI. Di- 
rect or secondary effects on neuronal and glial function may also oc- 
cur from increased CVMI factors. For instance, high hemoglobin A1c 
in people with obesity, type 2 diabetes or pre-diabetes reflects insulin 
resistance of muscle, blood, liver and other cells throughout the body. 
Neuronal insulin resistance is also a feature of current interest in neu- 
rocognitive disorders of aging ( Arnold et al., 2018 ), and may be one fac- 
tor reflected in weakened FC. Lower levels of vitamin D, frequently co- 
occurring in people with metabolic syndrome, can have significant di- 
rect effects on neurons and glial cells via its roles as a neuroactive steroid 
and immunomodulator, among others ( Talaei et al., 2013 ). Another ex- 
ample is elevated CRP, which has been described as another risk factor 
for cerebral vulnerability in people experiencing delirium after medical 
or surgical stress and injury ( Vasunilashorn et al., 2017 ). Finally, animal 
models have described mechanistic links between multiple CVM factors 
and the promotion of neurodegenerative diseases pathologies ( De Bem 

et al., 2021 ) including amyloid-b and tau ( Hardy and Selkoe, 2002 ), 
a-synuclein ( Spillantini et al., 1998 ) and TDP-43 ( Huang et al., 2020 ). 

Several experimental and methodological limitations must be consid- 
ered while interpreting this study’s findings. The cross ‐sectional design 
of the study limits the interpretation of our findings from a time ‐varying 
perspective. Further, there are known and unknown biases inherent 
in such a nonrandomly accrued cohort of generally healthy research 
volunteers, especially education, lifestyle, and healthcare. Also, lack 
of information on participants’ arousal levels during the fMRI record- 
ings limits us to evaluate the association between age and arousal level 
which might potentially be a confounding factor for the study. Also, 
our CVMI estimation represents a summary index which weighted a 
number of CVM RFs in a somewhat agnostic approach. To optimally 
compute the CVMI, future work should include other constructs of the 
summary index, such as using principal component analysis (PCA) or 
factor analysis. Strengths of the present study include the large and 
exceptionally well-characterized cohort, including a greater represen- 
tation of under-represented groups (31.4%, data not presented) than 
is typical in such studies. The current study had a sample size of 930 
adults spanning a wide age range (36–90 + years), thereby enabling ex- 
amination of CVM and age associations with resting FC while providing 
a sufficient sample for age-based stratification to compare CVMI and 
FC associations in different age strata. Additional strengths include the 
HCP-style ( Glasser et al., 2016 ) multi-modal MRI data acquisition and 
analysis approach, including high spatial and temporal resolution fMRI 
( Harms et al., 2018 ), surface-based processing ( Glasser et al., 2013 ) with 
functional cross-subject alignment ( Robinson et al., 2014 ) and without 
substantial spatial smoothing for markedly better spatial localization 
( Coalson et al., 2018 ), advanced spatial and temporal ICA-based de- 
noising to selectively remove both spatially specific and global fMRI 
artifacts without changing the neural signal of interest ( Glasser et al., 
2018 , 2019 ), and use of a multi-modal neurobiologically validated map 
of human cortical areas for better interpretability and to reduce multiple 
comparisons while increasing signal to noise ratio ( Glasser et al., 2016 ). 

Summary 

The findings presented in the current study demonstrate that CVM 

factors are associated with functional connectivity of the brain in a large 
cohort of generally healthy volunteers, and that the CVM effects are 
stronger in FC among core brain networks. This provides further imper- 
ative to the need for early attention to CVM factors in adults for optimal 
brain health and functioning. 

The degree to which CVM-related weakening of functional connec- 
tivity in the brain explains the greater vulnerability of people with 
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CVM disease for emergent dementia will be a natural extension of re- 
search in this HCP-A cohort with longitudinal assessment. It is estimated 
that almost 14 million people in the USA will have dementia by 2050 
( Hebert et al., 2013 ; Matthews et al., 2019 ) unless progress is made in 
preventing, delaying and ameliorating cognitive failure in the elderly. 
Future directions will include determining age-stratified effects of CVMI 
as well as how these findings relate to change cognition and behavior, as 
the longitudinal HCP-A cohort is followed into subsequent assessment 
cycles. 
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