12 research outputs found

    Correlating early evolution of parasitic platyhelminths to Gondwana breakup

    No full text
    Investigating patterns and processes of parasite diversification over ancient geological periods should involve comparisons of host and parasite phylogenies in a biogeographic context. It has been shown previously that the geographical distribution of host-specific parasites of sarcopterygians was guided, from Palaeozoic to Cainozoic times, mostly by evolution and diversification of their freshwater hosts. Here, we propose phylogenies of neobatrachian frogs and their specific parasites (Platyhelminthes, Monogenea) to investigate coevolutionary processes and historical biogeography of polystomes and further discuss all the possible assumptions that may account for the early evolution of these parasites. Phylogenetic analyses of concatenated rRNA nuclear genes (18S and partial 28S) supplemented by cophylogenetic and biogeographic vicariance analyses reveal four main parasite lineages that can be ascribed to centers of diversity, namely Australia, India, Africa, and South America. In addition, the relationships among these biogeographical monophyletic groups, substantiated by molecular dating, reflect sequential origins during the breakup of Gondwana. The Australian polystome lineage may have been isolated during the first stages of the breakup, whereas the Indian lineage would have arisen after the complete separation of western and eastern Gondwanan components. Next, polystomes would have codiverged with hyloid sensu stricto and ranoid frog lineages before the completion of South American and African plate separation. Ultimately, they would have undergone an extensive diversification in South America when their ancestral host families diversified. Therefore, the presence of polystome parasites in specific anuran host clades and in discrete geographic areas reveals the importance of biogeographic vicariance in diversification processes and supports the occurrence and radiation of amphibians over ancient and recent geological periods.http://dx.doi.org/10.1093/sysbio/syr078http://sysbio.oxfordjournals.org/content/60/6/762.full.pdf+htm

    Changements globaux et infections parasitaires à mollusques vecteurs. Un schistosome hybride atteint l’Europe

    No full text
    International audienceLa schistosomiase, ou bilharziose, est une maladie parasitaire tropicale et subtropicale causée par des parasites qui habitent les vaisseaux sanguins humains et sont transmis par des mollusques d’eau douce spécifiques. L’infection humaine se produit par la pénétration transcutanée du stade larvaire infectieux du parasite émis par le mollusque vecteur, dans l’eau de baignade

    Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases

    No full text
    Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails

    Schistosoma haematobium-Schistosoma mansoni Hybrid Parasite in Migrant Boy, France, 2017

    No full text
    Schistosomiasis is frequently detected in persons entering Europe. In 2017, we detected a Schistosoma mansoni-Schistosoma haematobium hybrid parasite infection in a migrant boy from Cote d'Ivoire entering France. Because such parasites might be established in Europe, as illustrated by an outbreak on Corsica Island, vectors of these parasites should be investigated

    Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction

    No full text
    Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Author summary Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field

    A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?

    No full text
    Background Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. Methodology/Principal findings In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. Conclusions/Significance This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field

    Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation

    No full text
    Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage-and sex-comparative manner. Methodology/Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function

    New insights into the role of DNA methylation in Biomphalaria glabrata infection susceptibility

    No full text
    Introduction As for many transmissible diseases non-pharmacological interventions are one of the most effective ways to control schistosoma infections. One of theses, the control of the intermediate host, is also recognized by WHO as a key element to eradication of the disease in humans. Biomphalaria snails can show remarkable resistance to schistosomes and prevalence is low in snail populations even in regions where the parasite is highly present in the vertebrate host.Resistance is a heritable trait, but it shows also high plasticity e.g., snails can be become resistant to the same parasite strain after a primary infection. One of the components of heritable plasticity is epigenetic information that refers to the heritable but reversible changes in gene function, and one of the bearers of epigenetic information is DNA methylation. We reasoned that modifying DNA methylation in the snail would have potentially positive effects on resistance traits. Methods We developed chemical DNA methylation modulators to which the snails were exposed to modify their pan-genomic methylation and we established a method for targeted DNA methylation modifications based on dCas9/Crispr. For heritability of resistance measure we used epigenetic recombinant inbred lines (EpiRILs) and experimental infections. Results We applied a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails. DNA methylations were also introduced in an inbred B.glabrata line by chemical treatment in F0. This led to phenotypic variation in F3 and methylation differences in F3. Both increase and decrease (up to 100% and down to 20% prevalence from 86% control) of infection success indicating variation in complex resistance/compatibility trait. Conclusions We show that DNA methylation can be modified in B.glabrata both chemically and dCas-based, and pan-genomic or targeted. These modifications produce heritable phenotypic variants and have an influence on infection susceptibility confirming the epigenetic component of this trait. A rational of DNA methylation-based vector control will be presented
    corecore