263 research outputs found
Network-level dynamics of diffusively coupled cells
We study molecular dynamics within populations of diffusively coupled cells
under the assumption of fast diffusive exchange. As a technical tool, we
propose conditions on boundedness and ultimate boundedness for systems with a
singular perturbation, which extend the classical asymptotic stability results
for singularly perturbed systems. Based on these results, we show that with
common models of intracellular dynamics, the cell population is coordinated in
the sense that all cells converge close to a common equilibrium point. We then
study a more specific example of coupled cells which behave as bistable
switches, where the intracellular dynamics are such that cells may be in one of
two equilibrium points. Here, we find that the whole population is bistable in
the sense that it converges to a population state where either all cells are
close to the one equilibrium point, or all cells are close to the other
equilibrium point. Finally, we discuss applications of these results for the
robustness of cellular decision making in coupled populations
Estimation of biochemical network parameter distributions in cell populations
Populations of heterogeneous cells play an important role in many biological
systems. In this paper we consider systems where each cell can be modelled by
an ordinary differential equation. To account for heterogeneity, parameter
values are different among individual cells, subject to a distribution function
which is part of the model specification.
Experimental data for heterogeneous cell populations can be obtained from
flow cytometric fluorescence microscopy. We present a heuristic approach to use
such data for estimation of the parameter distribution in the population. The
approach is based on generating simulation data for samples in parameter space.
By convex optimisation, a suitable probability density function for these
samples is computed.
To evaluate the proposed approach, we consider artificial data from a simple
model of the tumor necrosis factor (TNF) signalling pathway. Its main
characteristic is a bimodality in the TNF response: a certain percentage of
cells undergoes apoptosis upon stimulation, while the remaining part stays
alive. We show how our modelling approach allows to identify the reasons that
underly the differential response.Comment: 14 pages, 5 figure
Cooperative H-infinity Estimation for Large-Scale Interconnected Linear Systems
In this paper, a synthesis method for distributed estimation is presented,
which is suitable for dealing with large-scale interconnected linear systems
with disturbance. The main feature of the proposed method is that local
estimators only estimate a reduced set of state variables and their complexity
does not increase with the size of the system. Nevertheless, the local
estimators are able to deal with lack of local detectability. Moreover, the
estimators guarantee H-infinity-performance of the estimates with respect to
model and measurement disturbances.Comment: Short version published in Proc. American Control Conference (ACC),
pp.2119-2124. Chicago, IL, 201
- …