437 research outputs found

    Fiscal equalization, capitalization and the flypaper effect

    Get PDF

    Fiscal equalization, capitalization and the flypaper effect

    Get PDF

    Fiscal equalization, capitalization and the flypaper effect

    Get PDF

    Investigating Atomic Details of the CaF2_2(111) Surface with a qPlus Sensor

    Get PDF
    The (111) surface of CaF2_2 has been intensively studied with large-amplitude frequency-modulation atomic force microscopy and atomic contrast formation is now well understood. It has been shown that the apparent contrast patterns obtained with a polar tip strongly depend on the tip terminating ion and three sub-lattices of anions and cations can be imaged. Here, we study the details of atomic contrast formation on CaF2_2(111) with small-amplitude force microscopy utilizing the qPlus sensor that has been shown to provide utmost resolution at high scanning stability. Step edges resulting from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp structures and on flat terraces, the atomic corrugation is seen in high clarity even for large area scans. The atomic structure is also not lost when scanning across triple layer step edges. High resolution scans of small surface areas yield contrast features of anion- and cation sub-lattices with unprecedented resolution. These contrast patterns are related to previously reported theoretical results.Comment: 18 pages, 9 Figures, presented at 7th Int Conf Noncontact AFM Seattle, USA Sep 12-15 2004, accepted for publication in Nanotechnology, http://www.iop.or

    Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    Get PDF
    Discoveries from the prime Kepler mission demonstrated that small planets (< 3 Earth-radii) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65±\pm6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA's K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, 2.60 ±\pm 0.14% and 3.15 ±\pm 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 ±\pm 0.43 Earth-radii and 1.92 ±\pm 0.53 Earth-radii, respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and have a period ratio of 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system's formation history. Transit timing variations (TTVs) due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.Comment: Updated to ApJ accepted version; photometry available alongside LaTeX source; 10 pages, 7 figure

    Ion Mobility Shift of Isotopologues in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at Elevated Effective Temperatures

    Get PDF
    Ion mobility spectrometers (IMS) separate ions mainly by ion–neutral collision cross section and to a lesser extent by ion mass and effective temperature. When investigating isotopologues, the difference in collision cross section can be assumed negligible. Since the mobility shift of isotopologues is thus mainly caused by their difference in mass and effective temperature, the investigation of isotopologues can provide important insights into the theory of ion mobility. However, in classical IMS operated at ambient pressure, cluster formation with neutral molecules occurs, which significantly influences the mobility shift of isotopologues and thus makes a sound investigation of the effect of ion mass and effective temperature on the ion mobility difficult. In this work, the relative ion mobility of several organic compounds and their 13C-labeled isotopologues is studied in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at high reduced electric fields up to 120 Td, which allows the investigation of nonclustered ion species and thus enables a sound investigation of the mobility shift of isotopologues. The results show that the measured relative ion mobilities of isotopologues having the same effective temperature and, thus, their ion mass dominating the relative ion mobility agree well with theoretical relative ion mobilities predicted by the theory of ion mobility
    • …
    corecore