25 research outputs found

    Juvenile Salmon Usage of the Skeena River Estuary

    Get PDF
    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected

    Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    Get PDF
    BACKGROUND: Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). METHODOLOGY/PRINCIPAL FINDINGS: We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. CONCLUSIONS/SIGNIFICANCE: This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern

    The Skeena River estuary, proposed development, and distribution of juvenile salmon sampling.

    No full text
    <p>During the period of highest flow, the zone of freshwater influence extends from the mouth of the Skeena south to Ogden and Grenville Channels, and northwest through Chatham Sound, which also receives freshwater from the Nass River. The study area is shown divided into our analysis regions indicated by the letters IN for inside North, ON for outside north, MID for middle, IS for inside south, and OS for outside south. The IN region contains the focal industrial developments. Note that the ON region includes two polygons.</p

    Average normalized trawl catch of all species of juvenile sockeye (a), coho (b), pink (c), Chinook (d) and chum (e) salmon, pooled across all locations and sampling dates and normalized for 20 min sets.

    No full text
    <p>Dark grey bars indicate 2007 and light grey bars indicate 2013. Note different scales for y‐axes for different species. Region boundaries and abbreviations are same as for <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0118988#pone.0118988.g001" target="_blank">Fig. 1</a>.</p

    GAM coefficients for parametric region covariates for sockeye (a), coho (b) and Chinook (c) salmon.

    No full text
    <p>Coefficients are related to the (log) mean normalized catch per trawl set for each region in 2007 (black) and 2013 (grey ). Thus, a value of 0 indicates a mean normalized trawl catch of 1. Error bars indicate Β± 2 standard errors.</p

    Average beach seine catches of juvenile pink (a), chum (b), coho (c), and Chinook (d) salmon by sub-region, pooled across all sampling dates.

    No full text
    <p>No sockeye salmon were captured by beach seine. Pink salmon catches greater than 100 per location are indicated by black dots above bars. Catches greater than 100 or 1000 individuals were calculated as 100 or 1000. Note different scales of y‐axes. Locations are as follows: KIN = Kinahan Islands, LEL = Lelu Island, RID = Ridley Island, TTS = Tsum Tsadai Inlet. LEL and RID sites are within footprints of proposed development.</p

    Beach seine sampling stations within the IN region indicated in Fig. 1.

    No full text
    <p>Existing developments are shown in dark grey, while proposed development areas are diagonally shaded. Beach seine sampling stations are indicated by triangles. Beach seine sub-regions are indicated with open circles, except at Kinahan Islands where there was only one site.</p

    Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada&apos;s West Coast

    No full text
    Abstract Background: Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka)
    corecore