1,006 research outputs found

    Management of Incomplete Abortion as an Outpatient Procedure

    Get PDF
    A CAJM article on abortion.Between 800 and 1,200 cases of abortion are seen annually at Harare Hospital, Salisbury. Prior to 1st February, 1969, all cases of incomplete abortion were routinely admitted to the gynecological ward for observation and further treatment. In 1967, for example, 533 cases of abortion were seen during the six-month period 1st February to 31st of July. Of these, 396 were classified as non-septic and 137 as septic. All 533 patients were hospitalized, the average duration of stay in hospital being four days

    Cosmic String Cusps with Small-Scale Structure: Their Forms and Gravitational Waveforms

    Full text link
    We present a method for the introduction of small-scale structure into strings constructed from products of rotation matrices. We use this method to illustrate a range of possibilities for the shape of cusps that depends on the properties of the small-scale structure. We further argue that the presence of structure at cusps under most circumstances leads to the formation of loops at the size of the smallest scales. On the other hand we show that the gravitational waveform of a cusp remains generally unchanged; the primary effect of small-scale structure is to smooth out the sharp waveform emitted in the direction of cusp motion.Comment: RevTeX, 8 pages. Replaced with version accepted for publication by PR

    Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon)

    Get PDF
    Aim: This study compares the phylogeography, population structure and evolution of four butterflyfish species in the Chaetodon subgenus Corallochaetodon, with two widespread species (Indian Ocean – C. trifasciatus and Pacific Ocean – C. lunulatus), and two species that are largely restricted to the Red Sea (C. austriacus) and north-western (NW) Indian Ocean (C. melapterus). Through extensive geographical coverage of these taxa, we seek to resolve patterns of genetic diversity within and between closely related butterflyfish species in order to illuminate biogeographical and evolutionary processes. Location: Red Sea, Indian Ocean and Pacific Ocean. Methods: A total of 632 individuals from 24 locations throughout the geographical ranges of all four members of the subgenus Corallochaetodon were sequenced using a 605 bp fragment (cytochrome b) of mtDNA. In addition, 10 microsatellite loci were used to assess population structure in the two widespread species. Results: Phylogenetic reconstruction indicates that the Pacific Ocean C. lunulatus diverged from the Indian Ocean C. trifasciatus approximately 3 Ma, while C. melapterus and C. austriacus comprise a cluster of shared haplotypes derived from C. trifasciatus within the last 0.75 Myr. The Pacific C. lunulatus had significant population structure at peripheral locations on the eastern edge of its range (French Polynesia, Johnston Atoll, Hawai'i), and a strong break between two ecoregions of the Hawaiian Archipelago. The Indian Ocean C. trifasciatus showed significant structure only at the Chagos Archipelago in the central Indian Ocean, and the two range-restricted species showed no population structure but evidence of recent population expansion. Main conclusions: Patterns of endemism and genetic diversity in Corallochaetodon butterflyfishes have been shaped by (1) Plio-Pleistocene sea level changes that facilitated evolutionary divergences at biogeographical barriers between Indian and Pacific Oceans, and the Indian Ocean and Red Sea, and (2) semi-permeable oceanographic and ecological barriers working on a shorter time-scale. The evolution of range-restricted species (Red Sea and NW Indian Ocean) and isolated populations (Hawai'i) at peripheral biogeographical provinces indicates that these areas are evolutionary incubators for reef fishes

    A First-Quantized Formalism for Cosmological Particle Production

    Full text link
    We show that the amount of particle production in an arbitrary cosmological background can be determined using only the late-time positive-frequency modes. We don't refer to modes at early times, so there is no need for a Bogolubov transformation. We also show that particle production can be extracted from the Feynman propagator in an auxiliary spacetime. This provides a first-quantized formalism for computing particle production which, unlike conventional Bogolubov transformations, may be amenable to a string-theoretic generalization.Comment: 18 pages, LaTeX; v2: significantly revised for clarity; conclusions unchange

    The Puzzle of the Flyby Anomaly

    Full text link
    Close planetary flybys are frequently employed as a technique to place spacecraft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theoretical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of modern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio

    Modification to the power spectrum in the brane world inflation driven by the bulk inflaton

    Full text link
    We compute the cosmological perturbations generated in the brane world inflation driven by the bulk inflaton. Different from the model that the inflation is a brane effect, we exhibit the modification of the power spectrum of scalar perturbations due to the existence of the fifth dimension. With the change of the initial vacuum, we investigate the dependence of the correction of the power spectrum on the choice of the vacuum.Comment: replaced with the revised version, accepted for publication in PR

    Twice-daily intravenous bolus tacrolimus infusion for acute graft-vs-host disease prophylaxis

    Get PDF
    • …
    corecore