59,878 research outputs found

    Hole polaron formation and migration in olivine phosphate materials

    Full text link
    By combining first principles calculations and experimental XPS measurements, we investigate the electronic structure of potential Li-ion battery cathode materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that determine small hole polaron formation and migration. We show that small hole polaron formation depends on features in the electronic structure near the valence-band maximum and that, calculationally, these features depend on the methodology chosen for dealing with the correlated nature of the transition-metal d-derived states in these systems. Comparison with experiment reveals that a hybrid functional approach is superior to GGA+U in correctly reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot support small hole polarons, but that the other three compounds can. The migration barrier is determined mainly by the strong or weak bonding nature of the states at the top of the valence band, resulting in a substantially higher barrier for LiMnPO4 than for LiCoPO4 or LiFePO4

    Packing Fractions and Maximum Angles of Stability of Granular Materials

    Full text link
    In two-dimensional rotating drum experiments, we find two separate influences of the packing fraction of a granular heap on its stability. For a fixed grain shape, the stability increases with packing fraction. However, in determining the relative stability of different grain shapes, those with the lowest average packing fractions tend to form the most stable heaps. We also show that only the configuration close to the surface of the pile figures prominently.Comment: 4 pages, 4 figure

    Six New Galactic Orbits of Globular Clusters in a Milky-Way-Like Galaxy

    Get PDF
    Absolute proper motions for six new globular clusters have recently been determined. This motivated us to obtain the Galactic orbits of these six clusters both in an axisymmetric Galactic potential and in a barred potential, such as the one of our Galaxy. Orbits are also obtained for a Galactic potential that includes spiral arms. The orbital characteristics are compared and discussed for these three cases. Tidal radii and destruction rates are also computed and discussed.Comment: 29 pages, 11 figures. Accepted for publication in Ap

    Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    Get PDF
    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers

    Optical pumping of the electron spin polarization in bulk CuCl

    Full text link
    In CuCl bulk crystal negatively charged excitons (trions X−X^-) can be induced by the resonant optical excitation of extra electrons in conduction band minimum. In the case of light polarization and due to the top valence band structure of CuCl only the electrons with spin antiparallel to the direction of the light propagation contribute to the formation of X−X^-, while the emerging X−X^- can recombine into both possible electron states, with spin parallel and antiparallel to the direction of light propagation. We propose to use this mechanism for optical electronic spin pumping. We describe the dynamics of pumping in terms of density matrix formalism. The coherent pumping laser pulse propagating through the sample is described by Maxwell wave equation coupled to the density matrix evolution equations. The results of our approximate simple model calculations suggest that spin polarization close to 100% can be achieved in time shorter than 100ps.Comment: new extended version, 7 pages, 4 figure

    Driving light pulses with light in two-level media

    Full text link
    A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction, then scatters the medium and couples to the cavity standing wave by means of the population inversion density variations. We demonstrate that control of the applied amplitudes of the grating field allows to stop the light pulse and to make it move backward (eventually to drive it freely). A simplified limit model of the MB system with variable boundary driving is obtained as a discrete nonlinear Schroedinger equation with tunable external potential. It reproduces qualitatively the dynamics of the driven light pulse

    Development of an externally powered prosthetic hook for amputees

    Get PDF
    The powered hook with trigger finger appears to be a useful adaptation of a terminal device for an amputee when performing vocational activities involving the use of a powered tool requiring a trigger control. The proportional control system includes transducers and amplifiers and appears to have widespread application for control of any external power, whether it be in the orthotic or prosthetic field

    A relativistic study of Bessel beams

    Full text link
    We present a fully relativistic analysis of Bessel beams revealing some noteworthy features that are not explicit in the standard description. It is shown that there is a reference frame in which the field takes a particularly simple form, the wave appearing to rotate in circles. The concepts of polarization and angular momentum for Bessel beams is also reanalyzed.Comment: 11 pages, 2 fig
    • …
    corecore