2,587 research outputs found

    Pearling instability of nanoscale fluid flow confined to a chemical channel

    Full text link
    We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a "chemical channel": a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid regions. Molecular dynamics simulations, a simple long-wavelength approximation, and a full stability analysis based on the Stokes equations are used, and give qualitatively consistent results. While thin liquid ridges are stable both statically and during flow, a (linear) pearling instability develops if the thickness of the ridge exceeds half of the width of the channel. In the flowing case periodic bulges propagate along the channel and subsequently merge due to nonlinear effects. However, the ridge does not break up even when the flow is unstable, and the qualitative behavior is unchanged even when the fluid can spill over onto a partially wetting exterior solid region.Comment: 17 pages, 12 figures, submitted to Physics of Fluids, fixed equation numbering after Eq. (17

    Depression Care Management: Can Employers Purchase Improved Outcomes?

    Get PDF
    Fourteen vendors are currently selling depression care management products to US employers after randomized trials demonstrate improved work outcomes. The research team interviewed 10 (71.4%) of these vendors to compare their products to four key components of interventions demonstrated to improve work outcomes. Five of 10 depression products incorporate all four key components, three of which are sold by health maintenance organizations (HMOs); however, HMOs did not deliver these components at the recommended intensity and/or duration. Only one product delivered by a disease management company delivered all four components of care at the recommended intensity and duration. This “voltage drop,” which we anticipate will increase with product implementation, suggests that every delivery system should carefully evaluate the design of its depression product before implementation for its capacity to deliver evidence-based care, repeating these evaluations as new evidence emerges

    Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: A molecular dynamics simulation study

    Full text link
    A method is proposed to compute the interfacial free energy of a Lennard-Jones system in contact with a structured wall by molecular dynamics simulation. Both the bulk liquid and bulk face-centered-cubic crystal phase along the (111) orientation are considered. Our approach is based on a thermodynamic integration scheme where first the bulk Lennard-Jones system is reversibly transformed to a state where it interacts with a structureless flat wall. In a second step, the flat structureless wall is reversibly transformed into an atomistic wall with crystalline structure. The dependence of the interfacial free energy on various parameters such as the wall potential, the density and orientation of the wall is investigated. The conditions are indicated under which a Lennard-Jones crystal partially wets a flat wall.Comment: 15 pages, 11 figure

    Mean-field dynamical density functional theory

    Full text link
    We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. {\bf 110}, 8032 (1999)], supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian Dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.Comment: 8 pagers, 4 figure

    Nonlinear dielectric effect of dipolar fluids

    Full text link
    The nonlinear dielectric effect for dipolar fluids is studied within the framework of the mean spherical approximation (MSA) of hard core dipolar Yukawa fluids. Based on earlier results for the electric field dependence of the polarization our analytical results show so-called normal saturation effects which are in good agreement with corresponding NVT ensemble Monte Carlo simulation data. The linear and the nonlinear dielectric permittivities obtained from MC simulations are determined from the fluctuations of the total dipole moment of the system in the absence of an applied electric field. We compare the MSA based theoretical results with the corresponding Langevin and Debye-Weiss behaviors.Comment: 10 pages including 4 figure

    Exact Three Dimensional Casimir Force Amplitude, CC-function and Binder's Cumulant Ratio: Spherical Model Results

    Full text link
    The three dimensional mean spherical model on a hypercubic lattice with a film geometry L×2L\times \infty ^2 under periodic boundary conditions is considered in the presence of an external magnetic field HH. The universal Casimir amplitude Δ\Delta and the Binder's cumulant ratio BB are calculated exactly and found to be Δ=2ζ(3)/(5π)0.153051\Delta =-2\zeta (3)/(5\pi)\approx -0.153051 and B=2π/(5ln3[(1+5)/2]).B=2\pi /(\sqrt{5}\ln ^3[(1+\sqrt{5})/2]). A discussion on the relations between the finite temperature CC-function, usually defined for quantum systems, and the excess free energy (due to the finite-size contributions to the free energy of the system) scaling function is presented. It is demonstrated that the CC-function of the model equals 4/5 at the bulk critical temperature TcT_c. It is analytically shown that the excess free energy is a monotonically increasing function of the temperature TT and of the magnetic field H|H| in the vicinity of Tc.T_c. This property is supposed to hold for any classical dd-dimensional O(n),n>2,O(n),n>2, model with a film geometry under periodic boundary conditions when d3d\leq 3. An analytical evidence is also presented to confirm that the Casimir force in the system is negative both below and in the vicinity of the bulk critical temperature Tc.T_c.Comment: 12 pages revtex, one eps figure, submitted to Phys. Rev E A set of references added with the text needed to incorporate them. Small changes in the title and in the abstrac

    Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial

    Get PDF
    BACKGROUND: Antibiotic-associated diarrhoea (AAD) occurs most frequently in older (≥65 years) inpatients exposed to broad-spectrum antibiotics. When caused by Clostridium difficile, AAD can result in life-threatening illness. Although underlying disease mechanisms are not well understood, microbial preparations have been assessed in the prevention of AAD. However, studies have been mostly small single-centre trials with varying quality, providing insufficient data to reliably assess effectiveness. We aimed to do a pragmatic efficacy trial in older inpatients who would be representative of those admitted to National Health Service (NHS) and similar secondary care institutions and to recruit a sufficient number of patients to generate a definitive result. METHODS: We did a multicentre, randomised, double-blind, placebo-controlled, pragmatic, efficacy trial of inpatients aged 65 years and older and exposed to one or more oral or parenteral antibiotics. A computer-generated randomisation scheme was used to allocate participants (in a 1:1 ratio) to receive either a multistrain preparation of lactobacilli and bifidobacteria, with a total of 6 × 10(10) organisms, one per day for 21 days, or an identical placebo. Patients, study staff, and specimen and data analysts were masked to assignment. The primary outcomes were occurrence of AAD within 8 weeks and C difficile diarrhoea (CDD) within 12 weeks of recruitment. Analysis was by modified intention-to-treat. This trial is registered, number ISRCTN70017204. FINDINGS: Of 17,420 patients screened, 1493 were randomly assigned to the microbial preparation group and 1488 to the placebo group. 1470 and 1471, respectively, were included in the analyses of the primary endpoints. AAD (including CDD) occurred in 159 (10·8%) participants in the microbial preparation group and 153 (10·4%) participants in the placebo group (relative risk [RR] 1·04; 95% CI 0·84-1·28; p=0·71). CDD was an uncommon cause of AAD and occurred in 12 (0·8%) participants in the microbial preparation group and 17 (1·2%) participants in the placebo group (RR 0·71; 95% CI 0·34-1·47; p=0·35). 578 (19·7%) participants had one or more serious adverse event; the frequency of serious adverse events was much the same in the two study groups and none was attributed to participation in the trial. INTERPRETATION: We identified no evidence that a multistrain preparation of lactobacilli and bifidobacteria was effective in prevention of AAD or CDD. An improved understanding of the pathophysiology of AAD is needed to guide future studies. FUNDING: Health Technology Assessment programme; National Institute for Health Research, UK

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure

    Wetting transitions of Ne

    Full text link
    We report studies of the wetting behavior of Ne on very weakly attractive surfaces, carried out with the Grand Canonical Monte Carlo method. The Ne-Ne interaction was taken to be of Lennard-Jones form, while the Ne-surface interaction was derived from an ab initio calculation of Chizmeshya et al. Nonwetting behavior was found for Li, Rb, and Cs in the temperature regime explored (i.e., T < 42 K). Drying behavior was manifested in a depleted fluid density near the Cs surface. In contrast, for the case of Mg (a more attractive potential) a prewetting transition was found near T= 28 K. This temperature was found to shift slightly when a corrugated potential was used instead of a uniform potential. The isotherm shape and the density profiles did not differ qualitatively between these cases.Comment: 22 pages, 12 figures, submitted to Phys. Rev.

    Phase separation of an asymmetric binary fluid mixture confined in a nanoscopic slit pore: Molecular-dynamics simulations

    Full text link
    As a generic model system of an asymmetric binary fluid mixture, hexadecane dissolved in carbon dioxide is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this model reproduces the real phase diagram reasonable well, and also the initial stages of spinodal decomposition in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between parallel walls that are repulsive for both types of molecules are simulated in a rather large system (1356 x 1356 x 67.8 A^3, corresponding to about 3.2 million atoms). Following the sudden system expansion, a complicated interplay between phase separation in the directions perpendicular and parallel to the walls is found: in the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with time, and simple coarsening described by power-law growth is only observed if the domain sizes are much larger than the film thickness.Comment: accepted for publication in PR
    corecore